全球调节因子AbrB的组成性表达恢复了基因组减少的枯草芽孢杆菌菌株的生长缺陷,并提高了其代谢物的产量

Junya Yamamoto, O. Chumsakul, Yoshihiro Toya, T. Morimoto, Shenghao Liu, K. Masuda, Y. Kageyama, T. Hirasawa, Fumio Matsuda, N. Ogasawara, H. Shimizu, Ken-Ichi Yoshida, T. Oshima, S. Ishikawa
{"title":"全球调节因子AbrB的组成性表达恢复了基因组减少的枯草芽孢杆菌菌株的生长缺陷,并提高了其代谢物的产量","authors":"Junya Yamamoto, O. Chumsakul, Yoshihiro Toya, T. Morimoto, Shenghao Liu, K. Masuda, Y. Kageyama, T. Hirasawa, Fumio Matsuda, N. Ogasawara, H. Shimizu, Ken-Ichi Yoshida, T. Oshima, S. Ishikawa","doi":"10.1093/dnares/dsac015","DOIUrl":null,"url":null,"abstract":"Abstract Partial bacterial genome reduction by genome engineering can improve the productivity of various metabolites, possibly via deletion of non-essential genome regions involved in undesirable metabolic pathways competing with pathways for the desired end products. However, such reduction may cause growth defects. Genome reduction of Bacillus subtilis MGB874 increases the productivity of cellulases and proteases but reduces their growth rate. Here, we show that this growth defect could be restored by silencing redundant or less important genes affecting exponential growth by manipulating the global transcription factor AbrB. Comparative transcriptome analysis revealed that AbrB-regulated genes were upregulated and those involved in central metabolic pathway and synthetic pathways of amino acids and purine/pyrimidine nucleotides were downregulated in MGB874 compared with the wild-type strain, which we speculated were the cause of the growth defects. By constitutively expressing high levels of AbrB, AbrB regulon genes were repressed, while glycolytic flux increased, thereby restoring the growth rate to wild-type levels. This manipulation also enhanced the productivity of metabolites including γ-polyglutamic acid. This study provides the first evidence that undesired features induced by genome reduction can be relieved, at least partly, by manipulating a global transcription regulation system. A similar strategy could be applied to other genome engineering-based challenges aiming toward efficient material production in bacteria.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constitutive expression of the global regulator AbrB restores the growth defect of a genome-reduced Bacillus subtilis strain and improves its metabolite production\",\"authors\":\"Junya Yamamoto, O. Chumsakul, Yoshihiro Toya, T. Morimoto, Shenghao Liu, K. Masuda, Y. Kageyama, T. Hirasawa, Fumio Matsuda, N. Ogasawara, H. Shimizu, Ken-Ichi Yoshida, T. Oshima, S. Ishikawa\",\"doi\":\"10.1093/dnares/dsac015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Partial bacterial genome reduction by genome engineering can improve the productivity of various metabolites, possibly via deletion of non-essential genome regions involved in undesirable metabolic pathways competing with pathways for the desired end products. However, such reduction may cause growth defects. Genome reduction of Bacillus subtilis MGB874 increases the productivity of cellulases and proteases but reduces their growth rate. Here, we show that this growth defect could be restored by silencing redundant or less important genes affecting exponential growth by manipulating the global transcription factor AbrB. Comparative transcriptome analysis revealed that AbrB-regulated genes were upregulated and those involved in central metabolic pathway and synthetic pathways of amino acids and purine/pyrimidine nucleotides were downregulated in MGB874 compared with the wild-type strain, which we speculated were the cause of the growth defects. By constitutively expressing high levels of AbrB, AbrB regulon genes were repressed, while glycolytic flux increased, thereby restoring the growth rate to wild-type levels. This manipulation also enhanced the productivity of metabolites including γ-polyglutamic acid. This study provides the first evidence that undesired features induced by genome reduction can be relieved, at least partly, by manipulating a global transcription regulation system. A similar strategy could be applied to other genome engineering-based challenges aiming toward efficient material production in bacteria.\",\"PeriodicalId\":11212,\"journal\":{\"name\":\"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsac015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/dnares/dsac015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过基因组工程减少部分细菌基因组可以提高各种代谢物的生产力,可能是通过删除非必需的基因组区域,这些区域涉及不需要的代谢途径,与所需的最终产物的途径竞争。然而,这种减少可能导致生长缺陷。枯草芽孢杆菌MGB874基因组的减少提高了纤维素酶和蛋白酶的产量,但降低了它们的生长速度。在这里,我们发现这种生长缺陷可以通过控制全局转录因子AbrB来沉默冗余或不太重要的影响指数生长的基因来恢复。对比转录组分析显示,与野生型菌株相比,MGB874中abrb调控基因上调,而与氨基酸和嘌呤/嘧啶核苷酸合成途径相关的基因下调,我们推测这是导致生长缺陷的原因。通过组成性表达高水平的AbrB, AbrB调控基因被抑制,糖酵解通量增加,从而使生长速度恢复到野生型水平。这种操作也提高了代谢物的生产力,包括γ-聚谷氨酸。这项研究提供了第一个证据,证明由基因组减少引起的不希望的特征可以通过操纵全球转录调控系统来缓解,至少部分缓解。类似的策略可以应用于其他基于基因组工程的挑战,旨在有效地在细菌中生产物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constitutive expression of the global regulator AbrB restores the growth defect of a genome-reduced Bacillus subtilis strain and improves its metabolite production
Abstract Partial bacterial genome reduction by genome engineering can improve the productivity of various metabolites, possibly via deletion of non-essential genome regions involved in undesirable metabolic pathways competing with pathways for the desired end products. However, such reduction may cause growth defects. Genome reduction of Bacillus subtilis MGB874 increases the productivity of cellulases and proteases but reduces their growth rate. Here, we show that this growth defect could be restored by silencing redundant or less important genes affecting exponential growth by manipulating the global transcription factor AbrB. Comparative transcriptome analysis revealed that AbrB-regulated genes were upregulated and those involved in central metabolic pathway and synthetic pathways of amino acids and purine/pyrimidine nucleotides were downregulated in MGB874 compared with the wild-type strain, which we speculated were the cause of the growth defects. By constitutively expressing high levels of AbrB, AbrB regulon genes were repressed, while glycolytic flux increased, thereby restoring the growth rate to wild-type levels. This manipulation also enhanced the productivity of metabolites including γ-polyglutamic acid. This study provides the first evidence that undesired features induced by genome reduction can be relieved, at least partly, by manipulating a global transcription regulation system. A similar strategy could be applied to other genome engineering-based challenges aiming toward efficient material production in bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信