实线上振荡序列的密度

Ioannis Tsokanos
{"title":"实线上振荡序列的密度","authors":"Ioannis Tsokanos","doi":"10.2478/udt-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the density in the real line of oscillating sequences of the form (g(k)⋅F(kα))k∈ℕ, {\\left( {g\\left( k \\right) \\cdot F\\left( {k\\alpha } \\right)} \\right)_{k \\in \\mathbb{N}}}, where g is a positive increasing function and F a real continuous 1-periodic function. This extends work by Berend, Boshernitzan and Kolesnik [Distribution Modulo 1 of Some Oscillating Sequences I-III] who established differential properties on the function F ensuring that the oscillating sequence is dense modulo 1. More precisely, when F has finitely many roots in [0, 1), we provide necessary and also sufficient conditions for the oscillating sequence under consideration to be dense in ℝ. All the results are stated in terms of the Diophantine properties of α, with the help of the theory of continued fractions.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"86 1","pages":"105 - 130"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density of Oscillating Sequences in the Real Line\",\"authors\":\"Ioannis Tsokanos\",\"doi\":\"10.2478/udt-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we study the density in the real line of oscillating sequences of the form (g(k)⋅F(kα))k∈ℕ, {\\\\left( {g\\\\left( k \\\\right) \\\\cdot F\\\\left( {k\\\\alpha } \\\\right)} \\\\right)_{k \\\\in \\\\mathbb{N}}}, where g is a positive increasing function and F a real continuous 1-periodic function. This extends work by Berend, Boshernitzan and Kolesnik [Distribution Modulo 1 of Some Oscillating Sequences I-III] who established differential properties on the function F ensuring that the oscillating sequence is dense modulo 1. More precisely, when F has finitely many roots in [0, 1), we provide necessary and also sufficient conditions for the oscillating sequence under consideration to be dense in ℝ. All the results are stated in terms of the Diophantine properties of α, with the help of the theory of continued fractions.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"86 1\",\"pages\":\"105 - 130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2022-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了形式为(g(k)⋅F(kα))k∈_1,{\left ({g\left (k \right) \cdot F \left ({k\alpha}\right) }\right){_k\in\mathbb{N}}}的振荡序列实线上的密度,其中g为正递增函数,F为实连续1周期函数。这扩展了Berend, Boshernitzan和Kolesnik[一些振荡序列I-III的分布模1]的工作,他们建立了函数F上的微分性质,保证了振荡序列是密集模1。更确切地说,当F在[0,1)中有有限多个根时,我们给出了所考虑的振荡序列在F(0, 1)中密集的充分必要条件。在连分式理论的帮助下,所有的结果都用α的丢番图性质来表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density of Oscillating Sequences in the Real Line
Abstract In this paper we study the density in the real line of oscillating sequences of the form (g(k)⋅F(kα))k∈ℕ, {\left( {g\left( k \right) \cdot F\left( {k\alpha } \right)} \right)_{k \in \mathbb{N}}}, where g is a positive increasing function and F a real continuous 1-periodic function. This extends work by Berend, Boshernitzan and Kolesnik [Distribution Modulo 1 of Some Oscillating Sequences I-III] who established differential properties on the function F ensuring that the oscillating sequence is dense modulo 1. More precisely, when F has finitely many roots in [0, 1), we provide necessary and also sufficient conditions for the oscillating sequence under consideration to be dense in ℝ. All the results are stated in terms of the Diophantine properties of α, with the help of the theory of continued fractions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信