{"title":"I期临床试验的动态停止规则","authors":"M. Alam, Mohaimen Mansur","doi":"10.2478/bile-2018-0002","DOIUrl":null,"url":null,"abstract":"Summary This paper investigates a stopping rule to be utilised in phase I clinical trials. The motivation is to develop a dynamic rule so that a trial stops early if the maximum tolerated dose lies towards the beginning of a dose region. Also, it will employ many patients if the maximum tolerated dose lies towards the end of a dose region. A two-parameter logistic model is assumed for the dose-response data. A trial is stopped early before reaching the maximum number of patients when the width of the Bayesian posterior probability interval of the slope parameter meets a desired value. Instead of setting a pre-specified width to stop at, we determine it based on the parameter estimate obtained after a reasonable number of steps in a trial. Simulation studies of six plausible dose-response scenarios show that the proposed stopping rule is capable of limiting the number of patients to be recruited depending on the underlying scenario. Although the rule is applied to a D-optimum design here, it will be equally applicable to other model-based designs.","PeriodicalId":8933,"journal":{"name":"Biometrical Letters","volume":"1 1","pages":"17 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A dynamic stopping rule for phase I clinical trials\",\"authors\":\"M. Alam, Mohaimen Mansur\",\"doi\":\"10.2478/bile-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary This paper investigates a stopping rule to be utilised in phase I clinical trials. The motivation is to develop a dynamic rule so that a trial stops early if the maximum tolerated dose lies towards the beginning of a dose region. Also, it will employ many patients if the maximum tolerated dose lies towards the end of a dose region. A two-parameter logistic model is assumed for the dose-response data. A trial is stopped early before reaching the maximum number of patients when the width of the Bayesian posterior probability interval of the slope parameter meets a desired value. Instead of setting a pre-specified width to stop at, we determine it based on the parameter estimate obtained after a reasonable number of steps in a trial. Simulation studies of six plausible dose-response scenarios show that the proposed stopping rule is capable of limiting the number of patients to be recruited depending on the underlying scenario. Although the rule is applied to a D-optimum design here, it will be equally applicable to other model-based designs.\",\"PeriodicalId\":8933,\"journal\":{\"name\":\"Biometrical Letters\",\"volume\":\"1 1\",\"pages\":\"17 - 30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/bile-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bile-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dynamic stopping rule for phase I clinical trials
Summary This paper investigates a stopping rule to be utilised in phase I clinical trials. The motivation is to develop a dynamic rule so that a trial stops early if the maximum tolerated dose lies towards the beginning of a dose region. Also, it will employ many patients if the maximum tolerated dose lies towards the end of a dose region. A two-parameter logistic model is assumed for the dose-response data. A trial is stopped early before reaching the maximum number of patients when the width of the Bayesian posterior probability interval of the slope parameter meets a desired value. Instead of setting a pre-specified width to stop at, we determine it based on the parameter estimate obtained after a reasonable number of steps in a trial. Simulation studies of six plausible dose-response scenarios show that the proposed stopping rule is capable of limiting the number of patients to be recruited depending on the underlying scenario. Although the rule is applied to a D-optimum design here, it will be equally applicable to other model-based designs.