{"title":"通过局部补丁的秩估计散焦模糊","authors":"Guodong Xu, Yuhui Quan, Hui Ji","doi":"10.1109/ICCV.2017.574","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of defocus map estimation from a single image. We present a fast yet effective approach to estimate the spatially varying amounts of defocus blur at edge locations, which is based on the maximum ranks of the corresponding local patches with different orientations in gradient domain. Such an approach is motivated by the theoretical analysis which reveals the connection between the rank of a local patch blurred by a defocus-blur kernel and the blur amount by the kernel. After the amounts of defocus blur at edge locations are obtained, a complete defocus map is generated by a standard propagation procedure. The proposed method is extensively evaluated on real image datasets, and the experimental results show its superior performance to existing approaches.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"22 1","pages":"5381-5389"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Estimating Defocus Blur via Rank of Local Patches\",\"authors\":\"Guodong Xu, Yuhui Quan, Hui Ji\",\"doi\":\"10.1109/ICCV.2017.574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of defocus map estimation from a single image. We present a fast yet effective approach to estimate the spatially varying amounts of defocus blur at edge locations, which is based on the maximum ranks of the corresponding local patches with different orientations in gradient domain. Such an approach is motivated by the theoretical analysis which reveals the connection between the rank of a local patch blurred by a defocus-blur kernel and the blur amount by the kernel. After the amounts of defocus blur at edge locations are obtained, a complete defocus map is generated by a standard propagation procedure. The proposed method is extensively evaluated on real image datasets, and the experimental results show its superior performance to existing approaches.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"22 1\",\"pages\":\"5381-5389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper addresses the problem of defocus map estimation from a single image. We present a fast yet effective approach to estimate the spatially varying amounts of defocus blur at edge locations, which is based on the maximum ranks of the corresponding local patches with different orientations in gradient domain. Such an approach is motivated by the theoretical analysis which reveals the connection between the rank of a local patch blurred by a defocus-blur kernel and the blur amount by the kernel. After the amounts of defocus blur at edge locations are obtained, a complete defocus map is generated by a standard propagation procedure. The proposed method is extensively evaluated on real image datasets, and the experimental results show its superior performance to existing approaches.