李群的Tulczyjew三重态III:迭代束的高阶动力学和约简

IF 0.7 Q4 MECHANICS
Ougul Esen, H. Gumral, S. Sutlu
{"title":"李群的Tulczyjew三重态III:迭代束的高阶动力学和约简","authors":"Ougul Esen, H. Gumral, S. Sutlu","doi":"10.2298/TAM210312009E","DOIUrl":null,"url":null,"abstract":"Given a Lie group G, we elaborate the dynamics on T+T+G and T+TG,\n which is given by a Hamiltonian, as well as the dynamics on the Tulczyjew\n symplectic space TT+G, which may be defined by a Lagrangian or a\n Hamiltonian function. As the trivializations we adapted respect the group\n structures of the iterated bundles, we exploit all possible subgroup\n reductions (Poisson, symplectic or both) of higher order dynamics.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tulczyjew’s triplet for lie groups III: Higher order dynamics and reductions for iterated bundles\",\"authors\":\"Ougul Esen, H. Gumral, S. Sutlu\",\"doi\":\"10.2298/TAM210312009E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a Lie group G, we elaborate the dynamics on T+T+G and T+TG,\\n which is given by a Hamiltonian, as well as the dynamics on the Tulczyjew\\n symplectic space TT+G, which may be defined by a Lagrangian or a\\n Hamiltonian function. As the trivializations we adapted respect the group\\n structures of the iterated bundles, we exploit all possible subgroup\\n reductions (Poisson, symplectic or both) of higher order dynamics.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM210312009E\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM210312009E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

摘要

在给定李群G的情况下,给出了由哈密顿函数给出的T+T+G和T+TG上的动力学,以及由拉格朗日函数或哈密顿函数定义的图尔奇犹太辛空间TT+G上的动力学。由于我们所采用的琐屑化方法尊重迭代束的群结构,我们利用了所有可能的高阶动力学的子群约简(泊松,辛或两者)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tulczyjew’s triplet for lie groups III: Higher order dynamics and reductions for iterated bundles
Given a Lie group G, we elaborate the dynamics on T+T+G and T+TG, which is given by a Hamiltonian, as well as the dynamics on the Tulczyjew symplectic space TT+G, which may be defined by a Lagrangian or a Hamiltonian function. As the trivializations we adapted respect the group structures of the iterated bundles, we exploit all possible subgroup reductions (Poisson, symplectic or both) of higher order dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信