基于混沌自适应粒子群算法的反向传播人工神经网络石油价格预测

IF 0.2 Q4 MATHEMATICS
Mengshan Li, Genqin Sun, Huaijin Zhang, Keming Su, Bingsheng Chen, Yan Wu
{"title":"基于混沌自适应粒子群算法的反向传播人工神经网络石油价格预测","authors":"Mengshan Li, Genqin Sun, Huaijin Zhang, Keming Su, Bingsheng Chen, Yan Wu","doi":"10.11648/j.pamj.20170606.11","DOIUrl":null,"url":null,"abstract":"Petroleum price are affected by some uncertainties and nonlinear factors, how to predict the price effectively is the focus of the present study. In this paper, a 3 layers back propagation artificial neural network model based on particle swarm optimization algorithm combined with chaos theory and self-adaptive weight strategy is developed, the model structure is 7-13-1, and used to predict the petroleum price. By comparing with the other models, it shows that the model proposed in this paper has good prediction performance, the prediction accuracy and correlations are better.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":"18 1","pages":"154"},"PeriodicalIF":0.2000,"publicationDate":"2017-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Petroleum Price Using Back Propagation Artificial Neural Network Based on Chaotic Self-Adaptive Particle Swarm Algorithm\",\"authors\":\"Mengshan Li, Genqin Sun, Huaijin Zhang, Keming Su, Bingsheng Chen, Yan Wu\",\"doi\":\"10.11648/j.pamj.20170606.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Petroleum price are affected by some uncertainties and nonlinear factors, how to predict the price effectively is the focus of the present study. In this paper, a 3 layers back propagation artificial neural network model based on particle swarm optimization algorithm combined with chaos theory and self-adaptive weight strategy is developed, the model structure is 7-13-1, and used to predict the petroleum price. By comparing with the other models, it shows that the model proposed in this paper has good prediction performance, the prediction accuracy and correlations are better.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":\"18 1\",\"pages\":\"154\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.pamj.20170606.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.pamj.20170606.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

石油价格受到一些不确定性和非线性因素的影响,如何有效地预测石油价格是当前研究的重点。本文结合混沌理论和自适应权值策略,建立了基于粒子群优化算法的3层反向传播人工神经网络模型,模型结构为7-13-1,并用于石油价格预测。通过与其他模型的比较,表明本文模型具有较好的预测性能,预测精度和相关性都较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Petroleum Price Using Back Propagation Artificial Neural Network Based on Chaotic Self-Adaptive Particle Swarm Algorithm
Petroleum price are affected by some uncertainties and nonlinear factors, how to predict the price effectively is the focus of the present study. In this paper, a 3 layers back propagation artificial neural network model based on particle swarm optimization algorithm combined with chaos theory and self-adaptive weight strategy is developed, the model structure is 7-13-1, and used to predict the petroleum price. By comparing with the other models, it shows that the model proposed in this paper has good prediction performance, the prediction accuracy and correlations are better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信