通过电子表格上的线性规划识别项目调度中的关键活动的说明,附带教学注释

G. Light
{"title":"通过电子表格上的线性规划识别项目调度中的关键活动的说明,附带教学注释","authors":"G. Light","doi":"10.34257/GJSFRFVOL21IS1PG1","DOIUrl":null,"url":null,"abstract":"This note presents a speedy resolution of the critical activities for the critical path method (CPM) in project management by first running Excel Solver to obtain the minimized time of the completion of the project in question and next perturbing the required times of all the involved activities concomitantly to reveal the critical activities by observing the difference in the minimized times. We use extensions of decimal places for the classroom demonstration of the above-said perturbation, and consider additions of log(prime numbers) to the required times of all the activities to serve any large-scale professional analyses without using tailored-made software. As a separate incidental pedagogical note, we show a heuristic approach to constructing exactly three constraints to yield positive optimal values for all the three decision variables in linear programming.","PeriodicalId":12547,"journal":{"name":"Global Journal of Science Frontier Research","volume":"49 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on Identifying Critical Activities in Project Scheduling via Linear Programming on Spreadsheets, with Incidental Pedagogical Remarks\",\"authors\":\"G. Light\",\"doi\":\"10.34257/GJSFRFVOL21IS1PG1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note presents a speedy resolution of the critical activities for the critical path method (CPM) in project management by first running Excel Solver to obtain the minimized time of the completion of the project in question and next perturbing the required times of all the involved activities concomitantly to reveal the critical activities by observing the difference in the minimized times. We use extensions of decimal places for the classroom demonstration of the above-said perturbation, and consider additions of log(prime numbers) to the required times of all the activities to serve any large-scale professional analyses without using tailored-made software. As a separate incidental pedagogical note, we show a heuristic approach to constructing exactly three constraints to yield positive optimal values for all the three decision variables in linear programming.\",\"PeriodicalId\":12547,\"journal\":{\"name\":\"Global Journal of Science Frontier Research\",\"volume\":\"49 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Science Frontier Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/GJSFRFVOL21IS1PG1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Science Frontier Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/GJSFRFVOL21IS1PG1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了项目管理中关键路径法(CPM)关键活动的快速解决方案,首先运行Excel求解器以获得完成相关项目的最短时间,然后干扰所有相关活动的所需时间,通过观察最短时间的差异来揭示关键活动。我们使用小数位的扩展来进行上述扰动的课堂演示,并考虑将所有活动所需时间的对数(素数)相加,以提供任何大规模的专业分析,而无需使用定制的软件。作为一个单独的附带教学说明,我们展示了一种启发式方法来构造恰好三个约束,以产生线性规划中所有三个决策变量的正最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Identifying Critical Activities in Project Scheduling via Linear Programming on Spreadsheets, with Incidental Pedagogical Remarks
This note presents a speedy resolution of the critical activities for the critical path method (CPM) in project management by first running Excel Solver to obtain the minimized time of the completion of the project in question and next perturbing the required times of all the involved activities concomitantly to reveal the critical activities by observing the difference in the minimized times. We use extensions of decimal places for the classroom demonstration of the above-said perturbation, and consider additions of log(prime numbers) to the required times of all the activities to serve any large-scale professional analyses without using tailored-made software. As a separate incidental pedagogical note, we show a heuristic approach to constructing exactly three constraints to yield positive optimal values for all the three decision variables in linear programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信