farey -子图与连分数

Pub Date : 2021-06-28 DOI:10.1556/012.2022.01525
S. Kushwaha, R. Sarma
{"title":"farey -子图与连分数","authors":"S. Kushwaha, R. Sarma","doi":"10.1556/012.2022.01525","DOIUrl":null,"url":null,"abstract":"In this article, we study a family of subgraphs of the Farey graph, denoted as ℱN for every N ∈ ℕ. We show that ℱN is connected if and only if N is either equal to one or a prime power. We introduce a class of continued fractions referred to as ℱN -continued fractions for each N > 1. We establish a relation between ℱN-continued fractions and certain paths from infinity in the graph ℱN. Using this correspondence, we discuss the existence and uniqueness of ℱN-continued fraction expansions of real numbers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Farey-Subgraphs and Continued Fractions\",\"authors\":\"S. Kushwaha, R. Sarma\",\"doi\":\"10.1556/012.2022.01525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study a family of subgraphs of the Farey graph, denoted as ℱN for every N ∈ ℕ. We show that ℱN is connected if and only if N is either equal to one or a prime power. We introduce a class of continued fractions referred to as ℱN -continued fractions for each N > 1. We establish a relation between ℱN-continued fractions and certain paths from infinity in the graph ℱN. Using this correspondence, we discuss the existence and uniqueness of ℱN-continued fraction expansions of real numbers.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2022.01525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2022.01525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这篇文章中,我们研究了Farey图的一组子图,对于每一个N∈N,我们将其记为_ (N)。我们证明了当且仅当N等于1或一个素数幂时,N是连通的。我们引入一类连分数,称为_ (N) -对于每个N > 1的连分数。建立了图_ _ N中_ _ N连分式与无穷远处若干路径之间的关系。利用这种对应关系,讨论了实数的连分数展开式的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Farey-Subgraphs and Continued Fractions
In this article, we study a family of subgraphs of the Farey graph, denoted as ℱN for every N ∈ ℕ. We show that ℱN is connected if and only if N is either equal to one or a prime power. We introduce a class of continued fractions referred to as ℱN -continued fractions for each N > 1. We establish a relation between ℱN-continued fractions and certain paths from infinity in the graph ℱN. Using this correspondence, we discuss the existence and uniqueness of ℱN-continued fraction expansions of real numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信