基于Markov游戏的以人为中心的机器人无碰撞导航

Guo Ye, Qinjie Lin, Tzung-Han Juang, Han Liu
{"title":"基于Markov游戏的以人为中心的机器人无碰撞导航","authors":"Guo Ye, Qinjie Lin, Tzung-Han Juang, Han Liu","doi":"10.1109/ICRA40945.2020.9196810","DOIUrl":null,"url":null,"abstract":"We exploit Markov games as a framework for collision-free navigation of human-centered robots. Unlike the classical methods which formulate robot navigation as a single-agent Markov decision process with a static environment, our framework of Markov games adopts a multi-agent formulation with one primary agent representing the robot and the remaining auxiliary agents form a dynamic or even competing environment. Such a framework allows us to develop a path-following type adversarial training strategy to learn a robust decentralized collision avoidance policy. Through thorough experiments on both simulated and real-world mobile robots, we show that the learnt policy outperforms the state-of-the-art algorithms in both sample complexity and runtime robustness.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"24 1","pages":"11338-11344"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Collision-free Navigation of Human-centered Robots via Markov Games\",\"authors\":\"Guo Ye, Qinjie Lin, Tzung-Han Juang, Han Liu\",\"doi\":\"10.1109/ICRA40945.2020.9196810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exploit Markov games as a framework for collision-free navigation of human-centered robots. Unlike the classical methods which formulate robot navigation as a single-agent Markov decision process with a static environment, our framework of Markov games adopts a multi-agent formulation with one primary agent representing the robot and the remaining auxiliary agents form a dynamic or even competing environment. Such a framework allows us to develop a path-following type adversarial training strategy to learn a robust decentralized collision avoidance policy. Through thorough experiments on both simulated and real-world mobile robots, we show that the learnt policy outperforms the state-of-the-art algorithms in both sample complexity and runtime robustness.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"24 1\",\"pages\":\"11338-11344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们利用马尔可夫游戏作为以人为中心的机器人无碰撞导航的框架。与将机器人导航描述为静态环境下的单智能体马尔可夫决策过程的经典方法不同,我们的马尔可夫博弈框架采用多智能体公式,其中一个主智能体代表机器人,其余辅助智能体构成动态甚至竞争环境。这样的框架允许我们开发路径跟踪类型的对抗训练策略,以学习鲁棒的分散避碰策略。通过对模拟和现实世界移动机器人的深入实验,我们表明,学习策略在样本复杂度和运行时鲁棒性方面都优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collision-free Navigation of Human-centered Robots via Markov Games
We exploit Markov games as a framework for collision-free navigation of human-centered robots. Unlike the classical methods which formulate robot navigation as a single-agent Markov decision process with a static environment, our framework of Markov games adopts a multi-agent formulation with one primary agent representing the robot and the remaining auxiliary agents form a dynamic or even competing environment. Such a framework allows us to develop a path-following type adversarial training strategy to learn a robust decentralized collision avoidance policy. Through thorough experiments on both simulated and real-world mobile robots, we show that the learnt policy outperforms the state-of-the-art algorithms in both sample complexity and runtime robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信