双水平凸优化问题的近端算法

IF 0.1
Shevchenko, National University, Kyiv of Kyiv, nastialuita, zhilina.1958
{"title":"双水平凸优化问题的近端算法","authors":"Shevchenko, National University, Kyiv of Kyiv, nastialuita, zhilina.1958","doi":"10.17721/2706-9699.2021.1.19","DOIUrl":null,"url":null,"abstract":"In this paper, problems of bi-level convex minimization in a Hilbert space are considered. The bi-level convex minimization problem is to minimize the first convex function on the set of minima of the second convex function. This setting has many applications, but the implicit constraints generated by the internal problem make it difficult to obtain optimality conditions and construct algorithms. Multilevel optimization problems are formulated in a similar way, the source of which is the operation research problems (optimization according to sequentially specified criteria or lexicographic optimization). Attention is focused on problem solving using two proximal methods. The main theoretical results are theorems on the convergence of methods in various situations. The first of the methods is obtained by combining the penalty function method and the proximal method. Strong convergence is proved in the case of strong convexity of the function of the exterior problem. In the general case, only weak convergence has been proved. The second, the so-called proximal-gradient method, is a combination of one of the variants of the fast proximal-gradient algorithm with the method of penalty functions. The rates of convergence of the proximal-gradient method and its weak convergence are proved.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"33 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROXIMAL ALGORITHMS FOR BI-LEVEL CONVEX OPTIMIZATION PROBLEMS\",\"authors\":\"Shevchenko, National University, Kyiv of Kyiv, nastialuita, zhilina.1958\",\"doi\":\"10.17721/2706-9699.2021.1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, problems of bi-level convex minimization in a Hilbert space are considered. The bi-level convex minimization problem is to minimize the first convex function on the set of minima of the second convex function. This setting has many applications, but the implicit constraints generated by the internal problem make it difficult to obtain optimality conditions and construct algorithms. Multilevel optimization problems are formulated in a similar way, the source of which is the operation research problems (optimization according to sequentially specified criteria or lexicographic optimization). Attention is focused on problem solving using two proximal methods. The main theoretical results are theorems on the convergence of methods in various situations. The first of the methods is obtained by combining the penalty function method and the proximal method. Strong convergence is proved in the case of strong convexity of the function of the exterior problem. In the general case, only weak convergence has been proved. The second, the so-called proximal-gradient method, is a combination of one of the variants of the fast proximal-gradient algorithm with the method of penalty functions. The rates of convergence of the proximal-gradient method and its weak convergence are proved.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2021.1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2021.1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究Hilbert空间中的双水平凸极小化问题。双级凸极小化问题是在第二级凸函数的极小集上最小化第一级凸函数。这种设置有很多应用,但是由于内部问题产生的隐式约束使得获取最优性条件和构造算法变得困难。多级优化问题以类似的方式表述,其根源是运筹学问题(按顺序指定的标准进行优化或按字典顺序进行优化)。注意集中在使用两种近端方法解决问题。主要的理论成果是关于各种情况下方法收敛性的定理。第一种方法是将罚函数法与近端法相结合得到的。在外部问题的函数具有强凸性的情况下,证明了该方法的强收敛性。在一般情况下,只证明了弱收敛性。第二种是所谓的近端梯度法,它是快速近端梯度法的一种变体与惩罚函数法的结合。证明了近似梯度法的收敛速度及其弱收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROXIMAL ALGORITHMS FOR BI-LEVEL CONVEX OPTIMIZATION PROBLEMS
In this paper, problems of bi-level convex minimization in a Hilbert space are considered. The bi-level convex minimization problem is to minimize the first convex function on the set of minima of the second convex function. This setting has many applications, but the implicit constraints generated by the internal problem make it difficult to obtain optimality conditions and construct algorithms. Multilevel optimization problems are formulated in a similar way, the source of which is the operation research problems (optimization according to sequentially specified criteria or lexicographic optimization). Attention is focused on problem solving using two proximal methods. The main theoretical results are theorems on the convergence of methods in various situations. The first of the methods is obtained by combining the penalty function method and the proximal method. Strong convergence is proved in the case of strong convexity of the function of the exterior problem. In the general case, only weak convergence has been proved. The second, the so-called proximal-gradient method, is a combination of one of the variants of the fast proximal-gradient algorithm with the method of penalty functions. The rates of convergence of the proximal-gradient method and its weak convergence are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信