从自然语言中预测故事的叙事功能

Josep Valls-Vargas, Jichen Zhu, Santiago Ontañón
{"title":"从自然语言中预测故事的叙事功能","authors":"Josep Valls-Vargas, Jichen Zhu, Santiago Ontañón","doi":"10.1609/aiide.v12i1.12855","DOIUrl":null,"url":null,"abstract":"\n \n Computational narrative systems usually require knowledge about the story world and narrative theory to be encoded in some form of structured knowledge representation formalism, a notoriously time-consuming task requiring expertise in both storytelling and knowledge engineering. In this paper we present an approach that combines supervised machine learning with narrative domain knowledge toward automatically extracting such knowledge from natural language stories, focusing specifically on predicting Proppian narrative functions. Our experiments on a dataset of Russian fairy tales show that our system outperforms an informed baseline and that combining top-down narrative theory and bottom-up statistical models inferred from an annotated dataset increases prediction accuracy with respect to using them in isolation.\n \n","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"59 1","pages":"107-113"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Proppian Narrative Functions from Stories in Natural Language\",\"authors\":\"Josep Valls-Vargas, Jichen Zhu, Santiago Ontañón\",\"doi\":\"10.1609/aiide.v12i1.12855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Computational narrative systems usually require knowledge about the story world and narrative theory to be encoded in some form of structured knowledge representation formalism, a notoriously time-consuming task requiring expertise in both storytelling and knowledge engineering. In this paper we present an approach that combines supervised machine learning with narrative domain knowledge toward automatically extracting such knowledge from natural language stories, focusing specifically on predicting Proppian narrative functions. Our experiments on a dataset of Russian fairy tales show that our system outperforms an informed baseline and that combining top-down narrative theory and bottom-up statistical models inferred from an annotated dataset increases prediction accuracy with respect to using them in isolation.\\n \\n\",\"PeriodicalId\":92576,\"journal\":{\"name\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"volume\":\"59 1\",\"pages\":\"107-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v12i1.12855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v12i1.12855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算叙事系统通常需要关于故事世界和叙事理论的知识以某种形式的结构化知识表示形式进行编码,这是一项众所周知的耗时任务,需要讲故事和知识工程方面的专业知识。在本文中,我们提出了一种将监督机器学习与叙事领域知识相结合的方法,以从自然语言故事中自动提取这些知识,特别关注于预测Proppian叙事功能。我们在俄罗斯童话数据集上的实验表明,我们的系统优于知情基线,并且结合自上而下的叙事理论和自下而上的统计模型,从注释数据集推断,相对于单独使用它们,提高了预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Proppian Narrative Functions from Stories in Natural Language
Computational narrative systems usually require knowledge about the story world and narrative theory to be encoded in some form of structured knowledge representation formalism, a notoriously time-consuming task requiring expertise in both storytelling and knowledge engineering. In this paper we present an approach that combines supervised machine learning with narrative domain knowledge toward automatically extracting such knowledge from natural language stories, focusing specifically on predicting Proppian narrative functions. Our experiments on a dataset of Russian fairy tales show that our system outperforms an informed baseline and that combining top-down narrative theory and bottom-up statistical models inferred from an annotated dataset increases prediction accuracy with respect to using them in isolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信