基于交叉选择的进化策略

Q3 Computer Science
L. Khilkova
{"title":"基于交叉选择的进化策略","authors":"L. Khilkova","doi":"10.47839/ijc.22.1.2881","DOIUrl":null,"url":null,"abstract":"A search for an optimal value of a complex multi-dimensional continuous function is still one of the most pressing problems. The genetic algorithms (GA) and evolution strategies (ES) are methods to solving optimization problems that is based on natural selection, the process that drives biological evolution. Our goal was to use evolutionary optimization methods to find the global optimal value (minimum) of a non-smooth multi-dimensional function with a large number of local minimums. We took several test functions of different levels of complexity and used evolution strategies to solve the problem. The standard evolution strategies, which work well with smooth functions, gave us various points of local minimums as a solution, without finding the global minimum, for the complex function. In our work, we propose a new approach: the cross-selection method, which, in combination with previously developed methods - adaptive evolution strategies, gave a good result for the searth for the global minimum the complex function.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Selection Based Evolution Strategies\",\"authors\":\"L. Khilkova\",\"doi\":\"10.47839/ijc.22.1.2881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A search for an optimal value of a complex multi-dimensional continuous function is still one of the most pressing problems. The genetic algorithms (GA) and evolution strategies (ES) are methods to solving optimization problems that is based on natural selection, the process that drives biological evolution. Our goal was to use evolutionary optimization methods to find the global optimal value (minimum) of a non-smooth multi-dimensional function with a large number of local minimums. We took several test functions of different levels of complexity and used evolution strategies to solve the problem. The standard evolution strategies, which work well with smooth functions, gave us various points of local minimums as a solution, without finding the global minimum, for the complex function. In our work, we propose a new approach: the cross-selection method, which, in combination with previously developed methods - adaptive evolution strategies, gave a good result for the searth for the global minimum the complex function.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.22.1.2881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.22.1.2881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

寻找一个复杂的多维连续函数的最优值仍然是最紧迫的问题之一。遗传算法(GA)和进化策略(ES)是解决基于自然选择的优化问题的方法,自然选择是驱动生物进化的过程。我们的目标是使用进化优化方法寻找具有大量局部最小值的非光滑多维函数的全局最优值(最小值)。我们采用了几个不同复杂程度的测试函数,并使用进化策略来解决问题。对于光滑函数,标准进化策略给出了不同的局部最小值点作为解,而不需要找到全局最小值。在我们的工作中,我们提出了一种新的方法:交叉选择方法,该方法与先前开发的方法-自适应进化策略相结合,在寻找复杂函数的全局最小值方面取得了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Selection Based Evolution Strategies
A search for an optimal value of a complex multi-dimensional continuous function is still one of the most pressing problems. The genetic algorithms (GA) and evolution strategies (ES) are methods to solving optimization problems that is based on natural selection, the process that drives biological evolution. Our goal was to use evolutionary optimization methods to find the global optimal value (minimum) of a non-smooth multi-dimensional function with a large number of local minimums. We took several test functions of different levels of complexity and used evolution strategies to solve the problem. The standard evolution strategies, which work well with smooth functions, gave us various points of local minimums as a solution, without finding the global minimum, for the complex function. In our work, we propose a new approach: the cross-selection method, which, in combination with previously developed methods - adaptive evolution strategies, gave a good result for the searth for the global minimum the complex function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computing
International Journal of Computing Computer Science-Computer Science (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
39
期刊介绍: The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信