{"title":"半线性波动方程爆破曲线的收敛性","authors":"Takiko Sasaki","doi":"10.3934/dcdss.2020388","DOIUrl":null,"url":null,"abstract":"We consider a blow-up phenomenon for \\begin{document}$ { \\partial_t^2 u_ \\varepsilon} $\\end{document} \\begin{document}$ {- \\varepsilon^2 \\partial_x^2u_ \\varepsilon } $\\end{document} \\begin{document}$ { = F(\\partial_t u_ \\varepsilon)}. $\\end{document} The derivative of the solution \\begin{document}$ \\partial_t u_ \\varepsilon $\\end{document} blows-up on a curve \\begin{document}$ t = T_ \\varepsilon(x) $\\end{document} if we impose some conditions on the initial values and the nonlinear term \\begin{document}$ F $\\end{document} . We call \\begin{document}$ T_ \\varepsilon $\\end{document} blow-up curve for \\begin{document}$ { \\partial_t^2 u_ \\varepsilon} $\\end{document} \\begin{document}$ {- \\varepsilon^2 \\partial_x^2u_ \\varepsilon } $\\end{document} \\begin{document}$ { = F(\\partial_t u_ \\varepsilon)}. $\\end{document} In the same way, we consider the blow-up curve \\begin{document}$ t = \\tilde{T}(x) $\\end{document} for \\begin{document}$ {\\partial_t^2 u} $\\end{document} \\begin{document}$ = $\\end{document} \\begin{document}$ {F(\\partial_t u)}. $\\end{document} The purpose of this paper is to show that, for each \\begin{document}$ x $\\end{document} , \\begin{document}$ T_ \\varepsilon(x) $\\end{document} converges to \\begin{document}$ \\tilde{T}(x) $\\end{document} as \\begin{document}$ \\varepsilon\\rightarrow 0. $\\end{document}","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"47 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence of a blow-up curve for a semilinear wave equation\",\"authors\":\"Takiko Sasaki\",\"doi\":\"10.3934/dcdss.2020388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a blow-up phenomenon for \\\\begin{document}$ { \\\\partial_t^2 u_ \\\\varepsilon} $\\\\end{document} \\\\begin{document}$ {- \\\\varepsilon^2 \\\\partial_x^2u_ \\\\varepsilon } $\\\\end{document} \\\\begin{document}$ { = F(\\\\partial_t u_ \\\\varepsilon)}. $\\\\end{document} The derivative of the solution \\\\begin{document}$ \\\\partial_t u_ \\\\varepsilon $\\\\end{document} blows-up on a curve \\\\begin{document}$ t = T_ \\\\varepsilon(x) $\\\\end{document} if we impose some conditions on the initial values and the nonlinear term \\\\begin{document}$ F $\\\\end{document} . We call \\\\begin{document}$ T_ \\\\varepsilon $\\\\end{document} blow-up curve for \\\\begin{document}$ { \\\\partial_t^2 u_ \\\\varepsilon} $\\\\end{document} \\\\begin{document}$ {- \\\\varepsilon^2 \\\\partial_x^2u_ \\\\varepsilon } $\\\\end{document} \\\\begin{document}$ { = F(\\\\partial_t u_ \\\\varepsilon)}. $\\\\end{document} In the same way, we consider the blow-up curve \\\\begin{document}$ t = \\\\tilde{T}(x) $\\\\end{document} for \\\\begin{document}$ {\\\\partial_t^2 u} $\\\\end{document} \\\\begin{document}$ = $\\\\end{document} \\\\begin{document}$ {F(\\\\partial_t u)}. $\\\\end{document} The purpose of this paper is to show that, for each \\\\begin{document}$ x $\\\\end{document} , \\\\begin{document}$ T_ \\\\varepsilon(x) $\\\\end{document} converges to \\\\begin{document}$ \\\\tilde{T}(x) $\\\\end{document} as \\\\begin{document}$ \\\\varepsilon\\\\rightarrow 0. $\\\\end{document}\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"47 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2020388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2020388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
We consider a blow-up phenomenon for \begin{document}$ { \partial_t^2 u_ \varepsilon} $\end{document} \begin{document}$ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $\end{document} \begin{document}$ { = F(\partial_t u_ \varepsilon)}. $\end{document} The derivative of the solution \begin{document}$ \partial_t u_ \varepsilon $\end{document} blows-up on a curve \begin{document}$ t = T_ \varepsilon(x) $\end{document} if we impose some conditions on the initial values and the nonlinear term \begin{document}$ F $\end{document} . We call \begin{document}$ T_ \varepsilon $\end{document} blow-up curve for \begin{document}$ { \partial_t^2 u_ \varepsilon} $\end{document} \begin{document}$ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $\end{document} \begin{document}$ { = F(\partial_t u_ \varepsilon)}. $\end{document} In the same way, we consider the blow-up curve \begin{document}$ t = \tilde{T}(x) $\end{document} for \begin{document}$ {\partial_t^2 u} $\end{document} \begin{document}$ = $\end{document} \begin{document}$ {F(\partial_t u)}. $\end{document} The purpose of this paper is to show that, for each \begin{document}$ x $\end{document} , \begin{document}$ T_ \varepsilon(x) $\end{document} converges to \begin{document}$ \tilde{T}(x) $\end{document} as \begin{document}$ \varepsilon\rightarrow 0. $\end{document}
Convergence of a blow-up curve for a semilinear wave equation
We consider a blow-up phenomenon for \begin{document}$ { \partial_t^2 u_ \varepsilon} $\end{document} \begin{document}$ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $\end{document} \begin{document}$ { = F(\partial_t u_ \varepsilon)}. $\end{document} The derivative of the solution \begin{document}$ \partial_t u_ \varepsilon $\end{document} blows-up on a curve \begin{document}$ t = T_ \varepsilon(x) $\end{document} if we impose some conditions on the initial values and the nonlinear term \begin{document}$ F $\end{document} . We call \begin{document}$ T_ \varepsilon $\end{document} blow-up curve for \begin{document}$ { \partial_t^2 u_ \varepsilon} $\end{document} \begin{document}$ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $\end{document} \begin{document}$ { = F(\partial_t u_ \varepsilon)}. $\end{document} In the same way, we consider the blow-up curve \begin{document}$ t = \tilde{T}(x) $\end{document} for \begin{document}$ {\partial_t^2 u} $\end{document} \begin{document}$ = $\end{document} \begin{document}$ {F(\partial_t u)}. $\end{document} The purpose of this paper is to show that, for each \begin{document}$ x $\end{document} , \begin{document}$ T_ \varepsilon(x) $\end{document} converges to \begin{document}$ \tilde{T}(x) $\end{document} as \begin{document}$ \varepsilon\rightarrow 0. $\end{document}