河流对数对河岸侵蚀潜力的影响:多对数水槽研究

IF 4.6 Q2 ENVIRONMENTAL SCIENCES
N. Zhang, I. Rutherfurd, M. Ghisalberti
{"title":"河流对数对河岸侵蚀潜力的影响:多对数水槽研究","authors":"N. Zhang, I. Rutherfurd, M. Ghisalberti","doi":"10.1080/24705357.2019.1669495","DOIUrl":null,"url":null,"abstract":"Abstract Riparian trees can reduce bank erosion rates, but once a tree falls into a river it can increase local bank erosion. However, the influence of multiple logs, that hydraulically interact, on near-bank velocities has not been investigated. This paper reports flume experiments of the near-bank velocity changes and water level changes produced by multiple in-stream logs with equal and unequal spacing. The results suggest that the near-bank velocity increase caused by a single log can be reduced, and even reversed, by multiple logs. This reduced near-bank velocity mainly results from wake interference between the logs, rather than from the effect of backwater, and it varies systematically with the spacing between the logs. Bank erosion potential can be reduced where logs are spaced under 17 root-plate diameters and where the root-plate is located close to the bank. By contrast, the logs are likely to increase bank erosion when they are within an intermediate distance from the bank and are closely spaced (under 3.3 root-plate diameters apart). The flume results allow us to explore the temporal changes of the potential bank erosion in a reach with various log distributions.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The effect of instream logs on bank erosion potential: a flume study with multiple logs\",\"authors\":\"N. Zhang, I. Rutherfurd, M. Ghisalberti\",\"doi\":\"10.1080/24705357.2019.1669495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Riparian trees can reduce bank erosion rates, but once a tree falls into a river it can increase local bank erosion. However, the influence of multiple logs, that hydraulically interact, on near-bank velocities has not been investigated. This paper reports flume experiments of the near-bank velocity changes and water level changes produced by multiple in-stream logs with equal and unequal spacing. The results suggest that the near-bank velocity increase caused by a single log can be reduced, and even reversed, by multiple logs. This reduced near-bank velocity mainly results from wake interference between the logs, rather than from the effect of backwater, and it varies systematically with the spacing between the logs. Bank erosion potential can be reduced where logs are spaced under 17 root-plate diameters and where the root-plate is located close to the bank. By contrast, the logs are likely to increase bank erosion when they are within an intermediate distance from the bank and are closely spaced (under 3.3 root-plate diameters apart). The flume results allow us to explore the temporal changes of the potential bank erosion in a reach with various log distributions.\",\"PeriodicalId\":93201,\"journal\":{\"name\":\"Journal of ecohydraulics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ecohydraulics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705357.2019.1669495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2019.1669495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 10

摘要

河岸树木可以降低河岸侵蚀率,但一旦树木落入河中,就会增加当地的河岸侵蚀。然而,水力相互作用的多个测井曲线对近岸速度的影响尚未得到研究。本文报道了等距和不等距多段入流测井对近岸流速变化和水位变化的水槽试验。结果表明,单次测井引起的近岸速度增加可以通过多次测井来减小甚至逆转。近岸速度的降低主要是由于测井曲线之间的尾流干扰,而不是由于回水的影响,并且随着测井曲线之间的间距有系统的变化。如果原木间距小于17根板直径,并且根板靠近河岸,则可以减少侵蚀河岸的可能性。相比之下,当原木与河岸处于中间距离且间距较近(根板直径小于3.3)时,可能会增加对河岸的侵蚀。水槽的结果使我们能够探索具有不同对数分布的河段潜在河岸侵蚀的时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of instream logs on bank erosion potential: a flume study with multiple logs
Abstract Riparian trees can reduce bank erosion rates, but once a tree falls into a river it can increase local bank erosion. However, the influence of multiple logs, that hydraulically interact, on near-bank velocities has not been investigated. This paper reports flume experiments of the near-bank velocity changes and water level changes produced by multiple in-stream logs with equal and unequal spacing. The results suggest that the near-bank velocity increase caused by a single log can be reduced, and even reversed, by multiple logs. This reduced near-bank velocity mainly results from wake interference between the logs, rather than from the effect of backwater, and it varies systematically with the spacing between the logs. Bank erosion potential can be reduced where logs are spaced under 17 root-plate diameters and where the root-plate is located close to the bank. By contrast, the logs are likely to increase bank erosion when they are within an intermediate distance from the bank and are closely spaced (under 3.3 root-plate diameters apart). The flume results allow us to explore the temporal changes of the potential bank erosion in a reach with various log distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信