素数k元组的渐近密度及Hardy和Littlewood的一个猜想

L. T'oth
{"title":"素数k元组的渐近密度及Hardy和Littlewood的一个猜想","authors":"L. T'oth","doi":"10.12921/cmst.2019.0000033","DOIUrl":null,"url":null,"abstract":"In 1922 Hardy and Littlewood proposed a conjecture on the asymptotic density of admissible prime k-tuples. In 2011 Wolf computed the \"Skewes number\" for twin primes, i.e., the first prime at which a reversal of the Hardy-Littlewood inequality occurs. In this paper, we find \"Skewes numbers\" for 8 more prime k-tuples and provide numerical data in support of the Hardy-Littlewood conjecture. Moreover, we present several algorithms to compute such numbers.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Asymptotic Density of Prime k-tuples and a Conjecture of Hardy and Littlewood\",\"authors\":\"L. T'oth\",\"doi\":\"10.12921/cmst.2019.0000033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1922 Hardy and Littlewood proposed a conjecture on the asymptotic density of admissible prime k-tuples. In 2011 Wolf computed the \\\"Skewes number\\\" for twin primes, i.e., the first prime at which a reversal of the Hardy-Littlewood inequality occurs. In this paper, we find \\\"Skewes numbers\\\" for 8 more prime k-tuples and provide numerical data in support of the Hardy-Littlewood conjecture. Moreover, we present several algorithms to compute such numbers.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/cmst.2019.0000033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/cmst.2019.0000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

1922年Hardy和Littlewood提出了一个关于容许素数k元组的渐近密度的猜想。2011年,Wolf计算了双素数的“偏数”,即第一个出现Hardy-Littlewood不等式反转的素数。在本文中,我们找到了另外8个素数k元组的“偏数”,并提供了支持Hardy-Littlewood猜想的数值数据。此外,我们还提出了几种计算这些数字的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Asymptotic Density of Prime k-tuples and a Conjecture of Hardy and Littlewood
In 1922 Hardy and Littlewood proposed a conjecture on the asymptotic density of admissible prime k-tuples. In 2011 Wolf computed the "Skewes number" for twin primes, i.e., the first prime at which a reversal of the Hardy-Littlewood inequality occurs. In this paper, we find "Skewes numbers" for 8 more prime k-tuples and provide numerical data in support of the Hardy-Littlewood conjecture. Moreover, we present several algorithms to compute such numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信