{"title":"语音学习的计算模型","authors":"G. Jarosz","doi":"10.1146/ANNUREV-LINGUISTICS-011718-011832","DOIUrl":null,"url":null,"abstract":"Recent advances in computational modeling have led to significant discoveries about the representation and acquisition of phonological knowledge and the limits on language learning and variation. These discoveries are the result of applying computational learning models to increasingly rich and complex natural language data while making increasingly realistic assumptions about the learning task. This article reviews the recent developments in computational modeling that have made connections between fully explicit theories of learning, naturally occurring corpus data, and the richness of psycholinguistic and typological data possible. These advances fall into two broad research areas: ( a) the development of models capable of learning the quantitative, noisy, and inconsistent patterns that are characteristic of naturalistic data and ( b) the development of models with the capacity to learn hidden phonological structure from unlabeled data. After reviewing these advances, the article summarizes some of the most significant consequent discoveries.","PeriodicalId":45803,"journal":{"name":"Annual Review of Linguistics","volume":"154 5 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Computational Modeling of Phonological Learning\",\"authors\":\"G. Jarosz\",\"doi\":\"10.1146/ANNUREV-LINGUISTICS-011718-011832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in computational modeling have led to significant discoveries about the representation and acquisition of phonological knowledge and the limits on language learning and variation. These discoveries are the result of applying computational learning models to increasingly rich and complex natural language data while making increasingly realistic assumptions about the learning task. This article reviews the recent developments in computational modeling that have made connections between fully explicit theories of learning, naturally occurring corpus data, and the richness of psycholinguistic and typological data possible. These advances fall into two broad research areas: ( a) the development of models capable of learning the quantitative, noisy, and inconsistent patterns that are characteristic of naturalistic data and ( b) the development of models with the capacity to learn hidden phonological structure from unlabeled data. After reviewing these advances, the article summarizes some of the most significant consequent discoveries.\",\"PeriodicalId\":45803,\"journal\":{\"name\":\"Annual Review of Linguistics\",\"volume\":\"154 5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2019-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-LINGUISTICS-011718-011832\",\"RegionNum\":1,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1146/ANNUREV-LINGUISTICS-011718-011832","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
Recent advances in computational modeling have led to significant discoveries about the representation and acquisition of phonological knowledge and the limits on language learning and variation. These discoveries are the result of applying computational learning models to increasingly rich and complex natural language data while making increasingly realistic assumptions about the learning task. This article reviews the recent developments in computational modeling that have made connections between fully explicit theories of learning, naturally occurring corpus data, and the richness of psycholinguistic and typological data possible. These advances fall into two broad research areas: ( a) the development of models capable of learning the quantitative, noisy, and inconsistent patterns that are characteristic of naturalistic data and ( b) the development of models with the capacity to learn hidden phonological structure from unlabeled data. After reviewing these advances, the article summarizes some of the most significant consequent discoveries.
期刊介绍:
The Annual Review of Linguistics, in publication since 2015, covers significant developments in the field of linguistics, including phonetics, phonology, morphology, syntax, semantics, pragmatics, and their interfaces. Reviews synthesize advances in linguistic theory, sociolinguistics, psycholinguistics, neurolinguistics, language change, biology and evolution of language, typology, as well as applications of linguistics in many domains.