{"title":"自适应可见光通信LED接收器","authors":"Shuai Li, A. Pandharipande, F. Willems","doi":"10.1109/ICSENS.2017.8234237","DOIUrl":null,"url":null,"abstract":"We consider a visible light communication (VLC) system with light emitting diodes (LEDs), wherein LEDs are used for information transmission as well as reception while providing illumination. At the transmitter, a combination of a pulse width modulation (PWM) signal and a redundant run-length limited encoded on-off keying (OOK) signal is used for data transmission. The LED receiver uses OOK and the OFF periods therein for VLC reception. The range of such a system is however affected by ambient light changes and device portability. To address this problem, we propose a two-step decoder with edge detection followed by K-means clustering and adaptive threshold detection. We show that the proposed system achieves about 33% higher range in comparison to a non-adaptive VLC system.","PeriodicalId":92164,"journal":{"name":"2017 IEEE Sensors Applications Symposium (SAS). IEEE Staff","volume":"34 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Adaptive visible light communication LED receiver\",\"authors\":\"Shuai Li, A. Pandharipande, F. Willems\",\"doi\":\"10.1109/ICSENS.2017.8234237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a visible light communication (VLC) system with light emitting diodes (LEDs), wherein LEDs are used for information transmission as well as reception while providing illumination. At the transmitter, a combination of a pulse width modulation (PWM) signal and a redundant run-length limited encoded on-off keying (OOK) signal is used for data transmission. The LED receiver uses OOK and the OFF periods therein for VLC reception. The range of such a system is however affected by ambient light changes and device portability. To address this problem, we propose a two-step decoder with edge detection followed by K-means clustering and adaptive threshold detection. We show that the proposed system achieves about 33% higher range in comparison to a non-adaptive VLC system.\",\"PeriodicalId\":92164,\"journal\":{\"name\":\"2017 IEEE Sensors Applications Symposium (SAS). IEEE Staff\",\"volume\":\"34 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Sensors Applications Symposium (SAS). IEEE Staff\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2017.8234237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Sensors Applications Symposium (SAS). IEEE Staff","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2017.8234237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider a visible light communication (VLC) system with light emitting diodes (LEDs), wherein LEDs are used for information transmission as well as reception while providing illumination. At the transmitter, a combination of a pulse width modulation (PWM) signal and a redundant run-length limited encoded on-off keying (OOK) signal is used for data transmission. The LED receiver uses OOK and the OFF periods therein for VLC reception. The range of such a system is however affected by ambient light changes and device portability. To address this problem, we propose a two-step decoder with edge detection followed by K-means clustering and adaptive threshold detection. We show that the proposed system achieves about 33% higher range in comparison to a non-adaptive VLC system.