{"title":"辅酶Q10和白藜芦醇可消除紫杉醇引起的大鼠肝毒性","authors":"Elias Adikwu, N. Ebinyo, L. Harris","doi":"10.4103/ctm.ctm_31_19","DOIUrl":null,"url":null,"abstract":"Background: Hepatotoxicity is one of the adverse effects that may characterize the clinical use of paclitaxel (PCL). This study examined the protective effects of coenzyme Q10 (CoQ10) and resveratrol (RSV) on PCL-induced hepatotoxicity in albino rats. Methods: Forty-five adult male albino rats randomized into nine groups of n = 5 were used. Group 1 (placebo control) and Group 2 (solvent control) received 0.2 mL of normal saline and corn oil intraperitoneally (ip) daily for 5 days, respectively. Groups 3–5 received CoQ10 (20 mg/kg), RSV (20 mg/kg), and CoQ10 + RSV ip daily for 5 days, respectively. Group 6 received a dose of 20 mg/kg of PCL ip on the 5th day. Groups 7–9 were pretreated daily with CoQ10 (20 mg/kg), RSV (20 mg/kg), and CoQ10 + RSV ip for 5 days and treated with a dose of PCL on the 5th day, respectively. Rats were sacrificed after treatment; liver samples were estimated for histology and biochemical markers. Serum samples were estimated for liver function markers. Results: The liver of PCL-treated rats showed necrosis which correlates with significant (P < 0.001) increases in serum and liver biochemical indexes; gamma glutamyl transferase, lactate dehydrogenase, bilirubin, aminotransferases, alkaline phosphatase, and malondialdehyde levels when compared to control. Liver superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels were significantly (P < 0.001) decreased in PCL-treated rats when compared to control. Importantly, PCL-induced hepatotoxicity was significantly mitigated in CoQ10 (P < 0.05), RSV (P < 0.01), and CoQ10 + RSV (P < 0.001) pretreated rats when compared to PCL. Conclusion: CoQ10 and RSV were effective against PCL-induced hepatotoxicity in albino rats.","PeriodicalId":9428,"journal":{"name":"Cancer Translational Medicine","volume":"34 1","pages":"65 - 71"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coenzyme Q10 and resveratrol abrogate paclitaxel-induced hepatotoxicity in rats\",\"authors\":\"Elias Adikwu, N. Ebinyo, L. Harris\",\"doi\":\"10.4103/ctm.ctm_31_19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Hepatotoxicity is one of the adverse effects that may characterize the clinical use of paclitaxel (PCL). This study examined the protective effects of coenzyme Q10 (CoQ10) and resveratrol (RSV) on PCL-induced hepatotoxicity in albino rats. Methods: Forty-five adult male albino rats randomized into nine groups of n = 5 were used. Group 1 (placebo control) and Group 2 (solvent control) received 0.2 mL of normal saline and corn oil intraperitoneally (ip) daily for 5 days, respectively. Groups 3–5 received CoQ10 (20 mg/kg), RSV (20 mg/kg), and CoQ10 + RSV ip daily for 5 days, respectively. Group 6 received a dose of 20 mg/kg of PCL ip on the 5th day. Groups 7–9 were pretreated daily with CoQ10 (20 mg/kg), RSV (20 mg/kg), and CoQ10 + RSV ip for 5 days and treated with a dose of PCL on the 5th day, respectively. Rats were sacrificed after treatment; liver samples were estimated for histology and biochemical markers. Serum samples were estimated for liver function markers. Results: The liver of PCL-treated rats showed necrosis which correlates with significant (P < 0.001) increases in serum and liver biochemical indexes; gamma glutamyl transferase, lactate dehydrogenase, bilirubin, aminotransferases, alkaline phosphatase, and malondialdehyde levels when compared to control. Liver superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels were significantly (P < 0.001) decreased in PCL-treated rats when compared to control. Importantly, PCL-induced hepatotoxicity was significantly mitigated in CoQ10 (P < 0.05), RSV (P < 0.01), and CoQ10 + RSV (P < 0.001) pretreated rats when compared to PCL. Conclusion: CoQ10 and RSV were effective against PCL-induced hepatotoxicity in albino rats.\",\"PeriodicalId\":9428,\"journal\":{\"name\":\"Cancer Translational Medicine\",\"volume\":\"34 1\",\"pages\":\"65 - 71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Translational Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/ctm.ctm_31_19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Translational Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ctm.ctm_31_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coenzyme Q10 and resveratrol abrogate paclitaxel-induced hepatotoxicity in rats
Background: Hepatotoxicity is one of the adverse effects that may characterize the clinical use of paclitaxel (PCL). This study examined the protective effects of coenzyme Q10 (CoQ10) and resveratrol (RSV) on PCL-induced hepatotoxicity in albino rats. Methods: Forty-five adult male albino rats randomized into nine groups of n = 5 were used. Group 1 (placebo control) and Group 2 (solvent control) received 0.2 mL of normal saline and corn oil intraperitoneally (ip) daily for 5 days, respectively. Groups 3–5 received CoQ10 (20 mg/kg), RSV (20 mg/kg), and CoQ10 + RSV ip daily for 5 days, respectively. Group 6 received a dose of 20 mg/kg of PCL ip on the 5th day. Groups 7–9 were pretreated daily with CoQ10 (20 mg/kg), RSV (20 mg/kg), and CoQ10 + RSV ip for 5 days and treated with a dose of PCL on the 5th day, respectively. Rats were sacrificed after treatment; liver samples were estimated for histology and biochemical markers. Serum samples were estimated for liver function markers. Results: The liver of PCL-treated rats showed necrosis which correlates with significant (P < 0.001) increases in serum and liver biochemical indexes; gamma glutamyl transferase, lactate dehydrogenase, bilirubin, aminotransferases, alkaline phosphatase, and malondialdehyde levels when compared to control. Liver superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels were significantly (P < 0.001) decreased in PCL-treated rats when compared to control. Importantly, PCL-induced hepatotoxicity was significantly mitigated in CoQ10 (P < 0.05), RSV (P < 0.01), and CoQ10 + RSV (P < 0.001) pretreated rats when compared to PCL. Conclusion: CoQ10 and RSV were effective against PCL-induced hepatotoxicity in albino rats.