一类时滞家蝇模型的Hopf分岔分析

Xiaoyuan Chang, Xu Gao, Jimin Zhang
{"title":"一类时滞家蝇模型的Hopf分岔分析","authors":"Xiaoyuan Chang, Xu Gao, Jimin Zhang","doi":"10.1142/s0218127423501067","DOIUrl":null,"url":null,"abstract":"The oscillatory dynamics of a delayed housefly model is analyzed in this paper. The local and global stabilities at the non-negative equilibria are obtained via analyzing the distribution of eigenvalues and Lyapunov–LaSalle invariance principle, and the model undergoes the supercritical Hopf bifurcation and the transient oscillation. Based on Wu’s global Hopf bifurcation theory, the existence of the global bifurcation is established under certain conditions.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf Bifurcation Analysis of a Housefly Model with Time Delay\",\"authors\":\"Xiaoyuan Chang, Xu Gao, Jimin Zhang\",\"doi\":\"10.1142/s0218127423501067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oscillatory dynamics of a delayed housefly model is analyzed in this paper. The local and global stabilities at the non-negative equilibria are obtained via analyzing the distribution of eigenvalues and Lyapunov–LaSalle invariance principle, and the model undergoes the supercritical Hopf bifurcation and the transient oscillation. Based on Wu’s global Hopf bifurcation theory, the existence of the global bifurcation is established under certain conditions.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423501067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423501067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了时滞家蝇模型的振荡动力学。通过分析模型的特征值分布和Lyapunov-LaSalle不变性原理,得到了模型在非负平衡点处的局部稳定性和全局稳定性,模型经历了超临界Hopf分岔和瞬态振荡。基于Wu的全局Hopf分岔理论,在一定条件下建立了全局分岔的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopf Bifurcation Analysis of a Housefly Model with Time Delay
The oscillatory dynamics of a delayed housefly model is analyzed in this paper. The local and global stabilities at the non-negative equilibria are obtained via analyzing the distribution of eigenvalues and Lyapunov–LaSalle invariance principle, and the model undergoes the supercritical Hopf bifurcation and the transient oscillation. Based on Wu’s global Hopf bifurcation theory, the existence of the global bifurcation is established under certain conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信