{"title":"一类时滞家蝇模型的Hopf分岔分析","authors":"Xiaoyuan Chang, Xu Gao, Jimin Zhang","doi":"10.1142/s0218127423501067","DOIUrl":null,"url":null,"abstract":"The oscillatory dynamics of a delayed housefly model is analyzed in this paper. The local and global stabilities at the non-negative equilibria are obtained via analyzing the distribution of eigenvalues and Lyapunov–LaSalle invariance principle, and the model undergoes the supercritical Hopf bifurcation and the transient oscillation. Based on Wu’s global Hopf bifurcation theory, the existence of the global bifurcation is established under certain conditions.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf Bifurcation Analysis of a Housefly Model with Time Delay\",\"authors\":\"Xiaoyuan Chang, Xu Gao, Jimin Zhang\",\"doi\":\"10.1142/s0218127423501067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oscillatory dynamics of a delayed housefly model is analyzed in this paper. The local and global stabilities at the non-negative equilibria are obtained via analyzing the distribution of eigenvalues and Lyapunov–LaSalle invariance principle, and the model undergoes the supercritical Hopf bifurcation and the transient oscillation. Based on Wu’s global Hopf bifurcation theory, the existence of the global bifurcation is established under certain conditions.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423501067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423501067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hopf Bifurcation Analysis of a Housefly Model with Time Delay
The oscillatory dynamics of a delayed housefly model is analyzed in this paper. The local and global stabilities at the non-negative equilibria are obtained via analyzing the distribution of eigenvalues and Lyapunov–LaSalle invariance principle, and the model undergoes the supercritical Hopf bifurcation and the transient oscillation. Based on Wu’s global Hopf bifurcation theory, the existence of the global bifurcation is established under certain conditions.