基于文本的神经视频处理的内容和运动分离

Levent Karacan, Tolga Kerimouglu, .Ismail .Inan, Tolga Birdal, Erkut Erdem, Aykut Erdem
{"title":"基于文本的神经视频处理的内容和运动分离","authors":"Levent Karacan, Tolga Kerimouglu, .Ismail .Inan, Tolga Birdal, Erkut Erdem, Aykut Erdem","doi":"10.48550/arXiv.2211.02980","DOIUrl":null,"url":null,"abstract":"Giving machines the ability to imagine possible new objects or scenes from linguistic descriptions and produce their realistic renderings is arguably one of the most challenging problems in computer vision. Recent advances in deep generative models have led to new approaches that give promising results towards this goal. In this paper, we introduce a new method called DiCoMoGAN for manipulating videos with natural language, aiming to perform local and semantic edits on a video clip to alter the appearances of an object of interest. Our GAN architecture allows for better utilization of multiple observations by disentangling content and motion to enable controllable semantic edits. To this end, we introduce two tightly coupled networks: (i) a representation network for constructing a concise understanding of motion dynamics and temporally invariant content, and (ii) a translation network that exploits the extracted latent content representation to actuate the manipulation according to the target description. Our qualitative and quantitative evaluations demonstrate that DiCoMoGAN significantly outperforms existing frame-based methods, producing temporally coherent and semantically more meaningful results.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"71 1","pages":"443"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disentangling Content and Motion for Text-Based Neural Video Manipulation\",\"authors\":\"Levent Karacan, Tolga Kerimouglu, .Ismail .Inan, Tolga Birdal, Erkut Erdem, Aykut Erdem\",\"doi\":\"10.48550/arXiv.2211.02980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Giving machines the ability to imagine possible new objects or scenes from linguistic descriptions and produce their realistic renderings is arguably one of the most challenging problems in computer vision. Recent advances in deep generative models have led to new approaches that give promising results towards this goal. In this paper, we introduce a new method called DiCoMoGAN for manipulating videos with natural language, aiming to perform local and semantic edits on a video clip to alter the appearances of an object of interest. Our GAN architecture allows for better utilization of multiple observations by disentangling content and motion to enable controllable semantic edits. To this end, we introduce two tightly coupled networks: (i) a representation network for constructing a concise understanding of motion dynamics and temporally invariant content, and (ii) a translation network that exploits the extracted latent content representation to actuate the manipulation according to the target description. Our qualitative and quantitative evaluations demonstrate that DiCoMoGAN significantly outperforms existing frame-based methods, producing temporally coherent and semantically more meaningful results.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"71 1\",\"pages\":\"443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.02980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.02980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

让机器能够从语言描述中想象可能的新物体或场景,并产生逼真的渲染效果,可以说是计算机视觉领域最具挑战性的问题之一。深度生成模型的最新进展带来了新的方法,为实现这一目标提供了有希望的结果。在本文中,我们引入了一种名为DiCoMoGAN的新方法,用于使用自然语言操纵视频,旨在对视频片段进行局部和语义编辑,以改变感兴趣对象的外观。我们的GAN架构允许通过分离内容和运动来更好地利用多个观察结果,从而实现可控的语义编辑。为此,我们引入了两个紧密耦合的网络:(i)一个表示网络,用于构建对运动动力学和时间不变内容的简明理解;(ii)一个翻译网络,利用提取的潜在内容表示来根据目标描述启动操作。我们的定性和定量评估表明,DiCoMoGAN显著优于现有的基于框架的方法,产生时间连贯和语义上更有意义的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disentangling Content and Motion for Text-Based Neural Video Manipulation
Giving machines the ability to imagine possible new objects or scenes from linguistic descriptions and produce their realistic renderings is arguably one of the most challenging problems in computer vision. Recent advances in deep generative models have led to new approaches that give promising results towards this goal. In this paper, we introduce a new method called DiCoMoGAN for manipulating videos with natural language, aiming to perform local and semantic edits on a video clip to alter the appearances of an object of interest. Our GAN architecture allows for better utilization of multiple observations by disentangling content and motion to enable controllable semantic edits. To this end, we introduce two tightly coupled networks: (i) a representation network for constructing a concise understanding of motion dynamics and temporally invariant content, and (ii) a translation network that exploits the extracted latent content representation to actuate the manipulation according to the target description. Our qualitative and quantitative evaluations demonstrate that DiCoMoGAN significantly outperforms existing frame-based methods, producing temporally coherent and semantically more meaningful results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信