通过去除循环来提高QC-LDPC码的最小距离

Massimo Battaglioni, M. Baldi, G. Cancellieri
{"title":"通过去除循环来提高QC-LDPC码的最小距离","authors":"Massimo Battaglioni, M. Baldi, G. Cancellieri","doi":"10.23919/AEIT50178.2020.9241207","DOIUrl":null,"url":null,"abstract":"We focus on regular and irregular quasi-cyclic low-density parity-check codes and analyze their codewords. We show that any codeword can be decomposed into component codewords with smaller weight belonging to some component codes. Component codewords can be associated to cycles in the Tanner graph of the code. We transfer these theoretical results into the code design, finding that the removal of some specific classes of cycles yields benefits in terms of minimum distance and error rate performance.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"53 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the minimum distance of QC-LDPC codes by removing cycles\",\"authors\":\"Massimo Battaglioni, M. Baldi, G. Cancellieri\",\"doi\":\"10.23919/AEIT50178.2020.9241207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on regular and irregular quasi-cyclic low-density parity-check codes and analyze their codewords. We show that any codeword can be decomposed into component codewords with smaller weight belonging to some component codes. Component codewords can be associated to cycles in the Tanner graph of the code. We transfer these theoretical results into the code design, finding that the removal of some specific classes of cycles yields benefits in terms of minimum distance and error rate performance.\",\"PeriodicalId\":6689,\"journal\":{\"name\":\"2020 AEIT International Annual Conference (AEIT)\",\"volume\":\"53 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT50178.2020.9241207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

重点研究了正则和不规则准循环低密度奇偶校验码,并分析了它们的码字。我们证明了任何码字都可以被分解成分量码字,这些分量码字的权重较小,属于某些分量码。组件码字可以与代码的坦纳图中的循环相关联。我们将这些理论结果转移到代码设计中,发现去除某些特定类别的循环在最小距离和错误率性能方面产生了好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the minimum distance of QC-LDPC codes by removing cycles
We focus on regular and irregular quasi-cyclic low-density parity-check codes and analyze their codewords. We show that any codeword can be decomposed into component codewords with smaller weight belonging to some component codes. Component codewords can be associated to cycles in the Tanner graph of the code. We transfer these theoretical results into the code design, finding that the removal of some specific classes of cycles yields benefits in terms of minimum distance and error rate performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信