D. Ungureanu, D. Avram, N. Angelescu, A. Catangiu, F. Anghelina, V. Despa
{"title":"基于钙和磷酸盐合成生物陶瓷粉末的比较研究","authors":"D. Ungureanu, D. Avram, N. Angelescu, A. Catangiu, F. Anghelina, V. Despa","doi":"10.1515/bsmm-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper is presented a comparative study regarding the synthesis of hydroxyapatite powders. The chosen method of synthesis of this biomaterial was chemical co-precipitation. The structure, size and morphology of the obtained powders were analyzed by X-ray diffraction, infrared spectroscopy - FTIR, dynamic light diffusion DLS tehnique and scanning electron microscopy-SEM. The results obtained were compared with those obtained on a commercial hydroxyapatite powder. Investigation methods have confirmed the synthesis of a high purity hydroxyapatite with a optimal degree of crystallization and crystallinity for the reconstruction and regeneration of hard tissue.","PeriodicalId":30754,"journal":{"name":"Scientific Bulletin of Valahia University Materials and Mechanics","volume":"1 1","pages":"13 - 16"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparative Study of Bioceramic Powders Synthesis Based on Calcium and Phosphates\",\"authors\":\"D. Ungureanu, D. Avram, N. Angelescu, A. Catangiu, F. Anghelina, V. Despa\",\"doi\":\"10.1515/bsmm-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper is presented a comparative study regarding the synthesis of hydroxyapatite powders. The chosen method of synthesis of this biomaterial was chemical co-precipitation. The structure, size and morphology of the obtained powders were analyzed by X-ray diffraction, infrared spectroscopy - FTIR, dynamic light diffusion DLS tehnique and scanning electron microscopy-SEM. The results obtained were compared with those obtained on a commercial hydroxyapatite powder. Investigation methods have confirmed the synthesis of a high purity hydroxyapatite with a optimal degree of crystallization and crystallinity for the reconstruction and regeneration of hard tissue.\",\"PeriodicalId\":30754,\"journal\":{\"name\":\"Scientific Bulletin of Valahia University Materials and Mechanics\",\"volume\":\"1 1\",\"pages\":\"13 - 16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Bulletin of Valahia University Materials and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bsmm-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Bulletin of Valahia University Materials and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bsmm-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study of Bioceramic Powders Synthesis Based on Calcium and Phosphates
Abstract In this paper is presented a comparative study regarding the synthesis of hydroxyapatite powders. The chosen method of synthesis of this biomaterial was chemical co-precipitation. The structure, size and morphology of the obtained powders were analyzed by X-ray diffraction, infrared spectroscopy - FTIR, dynamic light diffusion DLS tehnique and scanning electron microscopy-SEM. The results obtained were compared with those obtained on a commercial hydroxyapatite powder. Investigation methods have confirmed the synthesis of a high purity hydroxyapatite with a optimal degree of crystallization and crystallinity for the reconstruction and regeneration of hard tissue.