随机椭圆偏微分方程约束下最优控制问题的h × p有限元方法

IF 0.3 Q4 MATHEMATICS, APPLIED
Hyung-C. Lee, Jangwoon Lee
{"title":"随机椭圆偏微分方程约束下最优控制问题的h × p有限元方法","authors":"Hyung-C. Lee, Jangwoon Lee","doi":"10.12941/JKSIAM.2015.19.387","DOIUrl":null,"url":null,"abstract":"This paper analyzes the h p version of the finite element method for optimal control problems constrained by elliptic partial differential equations with random inputs. The main result is that the h p error bound for the control problems subject to stochastic partial differential equations leads to an exponential rate of convergence with respect to p as for the corresponding direct problems. Numerical examples are used to confirm the theoretical results.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"11 1","pages":"387-407"},"PeriodicalIF":0.3000,"publicationDate":"2015-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES\",\"authors\":\"Hyung-C. Lee, Jangwoon Lee\",\"doi\":\"10.12941/JKSIAM.2015.19.387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the h p version of the finite element method for optimal control problems constrained by elliptic partial differential equations with random inputs. The main result is that the h p error bound for the control problems subject to stochastic partial differential equations leads to an exponential rate of convergence with respect to p as for the corresponding direct problems. Numerical examples are used to confirm the theoretical results.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"11 1\",\"pages\":\"387-407\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2015.19.387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2015.19.387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了随机输入椭圆型偏微分方程约束下最优控制问题的p型有限元法。主要结果是,随机偏微分方程控制问题的hp误差界导致相应的直接问题相对于p的指数收敛率。数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES
This paper analyzes the h p version of the finite element method for optimal control problems constrained by elliptic partial differential equations with random inputs. The main result is that the h p error bound for the control problems subject to stochastic partial differential equations leads to an exponential rate of convergence with respect to p as for the corresponding direct problems. Numerical examples are used to confirm the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信