{"title":"信道域SVD杂波滤波的通用框架","authors":"Kathryn A. Ozgun, B. Byram","doi":"10.1109/ULTSYM.2019.8925935","DOIUrl":null,"url":null,"abstract":"Eigen-based clutter filtering of Doppler data has demonstrated greater clutter rejection performance than traditional filtering in a number of studies. However, practical translation of these eigen-based techniques to channel domain filtering applications is limited by their high computational burden. To enable efficient eigen-based filtering of channel data, we propose a domain-adaptive filtering framework. This technique involves using a basis set generated from RF data to filter delayed channel data. Preliminary findings suggest that this technique retains superior clutter rejection performance in comparison to conventional techniques.","PeriodicalId":6759,"journal":{"name":"2019 IEEE International Ultrasonics Symposium (IUS)","volume":"2014 1","pages":"2246-2248"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A General Framework for Channel Domain SVD Clutter Filtering\",\"authors\":\"Kathryn A. Ozgun, B. Byram\",\"doi\":\"10.1109/ULTSYM.2019.8925935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eigen-based clutter filtering of Doppler data has demonstrated greater clutter rejection performance than traditional filtering in a number of studies. However, practical translation of these eigen-based techniques to channel domain filtering applications is limited by their high computational burden. To enable efficient eigen-based filtering of channel data, we propose a domain-adaptive filtering framework. This technique involves using a basis set generated from RF data to filter delayed channel data. Preliminary findings suggest that this technique retains superior clutter rejection performance in comparison to conventional techniques.\",\"PeriodicalId\":6759,\"journal\":{\"name\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"volume\":\"2014 1\",\"pages\":\"2246-2248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2019.8925935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2019.8925935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A General Framework for Channel Domain SVD Clutter Filtering
Eigen-based clutter filtering of Doppler data has demonstrated greater clutter rejection performance than traditional filtering in a number of studies. However, practical translation of these eigen-based techniques to channel domain filtering applications is limited by their high computational burden. To enable efficient eigen-based filtering of channel data, we propose a domain-adaptive filtering framework. This technique involves using a basis set generated from RF data to filter delayed channel data. Preliminary findings suggest that this technique retains superior clutter rejection performance in comparison to conventional techniques.