中文微博情感分析的主题独立混合方法

H. Ping, Li Shan, Jiang Yunfei
{"title":"中文微博情感分析的主题独立混合方法","authors":"H. Ping, Li Shan, Jiang Yunfei","doi":"10.1109/IRI.2016.68","DOIUrl":null,"url":null,"abstract":"People's attitude towards specific events is usually contained in their Internet speech. When monitoring public opinions on the Internet, the sentiments of social media users should be analyzed in real time. For example, the expression of target user should be analyzed to get his/her emotional changing trend. However, present literatures on text sentiment analysis are limited to specific domains and topics, because they usually employ machine learning method to get sentiment polarity, which is trained on one specific topic area. In this paper, our approach combines the lexicon-based with the similarity-based method to extract sentiment word, then utilize the semantic rules and emoticons to obtain the sentiment polarity of short text. The results show that the proposed approach can get higher accuracy than the SVM method on topic-independent corpus and can be applied to online sentiment analysis.","PeriodicalId":89460,"journal":{"name":"Proceedings of the ... IEEE International Conference on Information Reuse and Integration. IEEE International Conference on Information Reuse and Integration","volume":"2014 1","pages":"463-468"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Topic-Independent Hybrid Approach for Sentiment Analysis of Chinese Microblog\",\"authors\":\"H. Ping, Li Shan, Jiang Yunfei\",\"doi\":\"10.1109/IRI.2016.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People's attitude towards specific events is usually contained in their Internet speech. When monitoring public opinions on the Internet, the sentiments of social media users should be analyzed in real time. For example, the expression of target user should be analyzed to get his/her emotional changing trend. However, present literatures on text sentiment analysis are limited to specific domains and topics, because they usually employ machine learning method to get sentiment polarity, which is trained on one specific topic area. In this paper, our approach combines the lexicon-based with the similarity-based method to extract sentiment word, then utilize the semantic rules and emoticons to obtain the sentiment polarity of short text. The results show that the proposed approach can get higher accuracy than the SVM method on topic-independent corpus and can be applied to online sentiment analysis.\",\"PeriodicalId\":89460,\"journal\":{\"name\":\"Proceedings of the ... IEEE International Conference on Information Reuse and Integration. IEEE International Conference on Information Reuse and Integration\",\"volume\":\"2014 1\",\"pages\":\"463-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE International Conference on Information Reuse and Integration. IEEE International Conference on Information Reuse and Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2016.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Conference on Information Reuse and Integration. IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2016.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人们对特定事件的态度通常包含在他们的网络言论中。在对网络舆情进行监控时,要实时分析社交媒体用户的情绪。例如,分析目标用户的表情,了解其情绪变化趋势。然而,目前关于文本情感分析的文献仅限于特定的领域和主题,因为它们通常使用机器学习方法来获得情感极性,并且是在特定的主题领域上进行训练的。本文将基于词汇的方法和基于相似度的方法相结合,提取情感词,然后利用语义规则和表情符号获得短文本的情感极性。结果表明,该方法在主题无关语料库上比支持向量机方法具有更高的准确率,可以应用于在线情感分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Topic-Independent Hybrid Approach for Sentiment Analysis of Chinese Microblog
People's attitude towards specific events is usually contained in their Internet speech. When monitoring public opinions on the Internet, the sentiments of social media users should be analyzed in real time. For example, the expression of target user should be analyzed to get his/her emotional changing trend. However, present literatures on text sentiment analysis are limited to specific domains and topics, because they usually employ machine learning method to get sentiment polarity, which is trained on one specific topic area. In this paper, our approach combines the lexicon-based with the similarity-based method to extract sentiment word, then utilize the semantic rules and emoticons to obtain the sentiment polarity of short text. The results show that the proposed approach can get higher accuracy than the SVM method on topic-independent corpus and can be applied to online sentiment analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信