Hilbert空间正交分解的形式化

IF 1 Q1 MATHEMATICS
Hiroyuki Okazaki
{"title":"Hilbert空间正交分解的形式化","authors":"Hiroyuki Okazaki","doi":"10.2478/forma-2022-0023","DOIUrl":null,"url":null,"abstract":"Summary In this article, we formalize the theorems about orthogonal decomposition of Hilbert spaces, using the Mizar system [1], [2]. For any subspace S of a Hilbert space H, any vector can be represented by the sum of a vector in S and a vector orthogonal to S. The formalization of orthogonal complements of Hilbert spaces has been stored in the Mizar Mathematical Library [4]. We referred to [5] and [6] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Formalization of Orthogonal Decomposition for Hilbert Spaces\",\"authors\":\"Hiroyuki Okazaki\",\"doi\":\"10.2478/forma-2022-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this article, we formalize the theorems about orthogonal decomposition of Hilbert spaces, using the Mizar system [1], [2]. For any subspace S of a Hilbert space H, any vector can be represented by the sum of a vector in S and a vector orthogonal to S. The formalization of orthogonal complements of Hilbert spaces has been stored in the Mizar Mathematical Library [4]. We referred to [5] and [6] in the formalization.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2022-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2022-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文利用Mizar系统[1],[2],形式化了Hilbert空间的正交分解定理。对于Hilbert空间H的任何子空间S,任何向量都可以用S中的一个向量与S正交的向量的和来表示。Hilbert空间的正交补的形式化已经存储在Mizar数学库中[4]。我们在形式化中提到了[5]和[6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formalization of Orthogonal Decomposition for Hilbert Spaces
Summary In this article, we formalize the theorems about orthogonal decomposition of Hilbert spaces, using the Mizar system [1], [2]. For any subspace S of a Hilbert space H, any vector can be represented by the sum of a vector in S and a vector orthogonal to S. The formalization of orthogonal complements of Hilbert spaces has been stored in the Mizar Mathematical Library [4]. We referred to [5] and [6] in the formalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信