程序验证的控制流导向SMT求解

Jianhui Chen, Fei He
{"title":"程序验证的控制流导向SMT求解","authors":"Jianhui Chen, Fei He","doi":"10.1145/3238147.3238218","DOIUrl":null,"url":null,"abstract":"Satisfiability modulo theories (SMT) solvers have been widely applied as the reasoning engine for diverse software analysis and verification technologies. The efficiency of the SMT solver has significant effects on the performance of these technologies. However, the current SMT solvers are designed for the general purpose of constraint solving. Many useful knowledge of programs cannot be utilized during the SMT solving. As a result, the SMT solver may spend a lot of effort to explore redundant search space. In this paper, we propose a novel approach for utilizing control-flow knowledge in SMT solving. With this technique, the search space can be considerably reduced and the efficiency of SMT solving is observably improved. We conducted extensive experiments on credible benchmarks, the results show orders of magnitude improvements of our approach.","PeriodicalId":6622,"journal":{"name":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"63 1","pages":"351-361"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Control Flow-Guided SMT Solving for Program Verification\",\"authors\":\"Jianhui Chen, Fei He\",\"doi\":\"10.1145/3238147.3238218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satisfiability modulo theories (SMT) solvers have been widely applied as the reasoning engine for diverse software analysis and verification technologies. The efficiency of the SMT solver has significant effects on the performance of these technologies. However, the current SMT solvers are designed for the general purpose of constraint solving. Many useful knowledge of programs cannot be utilized during the SMT solving. As a result, the SMT solver may spend a lot of effort to explore redundant search space. In this paper, we propose a novel approach for utilizing control-flow knowledge in SMT solving. With this technique, the search space can be considerably reduced and the efficiency of SMT solving is observably improved. We conducted extensive experiments on credible benchmarks, the results show orders of magnitude improvements of our approach.\",\"PeriodicalId\":6622,\"journal\":{\"name\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"63 1\",\"pages\":\"351-361\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3238147.3238218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3238147.3238218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

可满足模理论(SMT)解算器作为推理引擎被广泛应用于各种软件分析和验证技术。SMT求解器的效率对这些技术的性能有着重要的影响。然而,目前的SMT求解器是为约束求解的一般目的而设计的。许多有用的程序知识在SMT求解过程中不能被利用。因此,SMT求解器可能会花费大量精力来探索冗余搜索空间。在本文中,我们提出了一种利用控制流知识求解SMT的新方法。使用该技术,可以大大减少搜索空间,并明显提高SMT求解的效率。我们在可靠的基准上进行了广泛的实验,结果表明我们的方法有了数量级的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control Flow-Guided SMT Solving for Program Verification
Satisfiability modulo theories (SMT) solvers have been widely applied as the reasoning engine for diverse software analysis and verification technologies. The efficiency of the SMT solver has significant effects on the performance of these technologies. However, the current SMT solvers are designed for the general purpose of constraint solving. Many useful knowledge of programs cannot be utilized during the SMT solving. As a result, the SMT solver may spend a lot of effort to explore redundant search space. In this paper, we propose a novel approach for utilizing control-flow knowledge in SMT solving. With this technique, the search space can be considerably reduced and the efficiency of SMT solving is observably improved. We conducted extensive experiments on credible benchmarks, the results show orders of magnitude improvements of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信