查询驱动的功能依赖冲突修复

Stella Giannakopoulou, M. Karpathiotakis, A. Ailamaki
{"title":"查询驱动的功能依赖冲突修复","authors":"Stella Giannakopoulou, M. Karpathiotakis, A. Ailamaki","doi":"10.1109/ICDE48307.2020.00195","DOIUrl":null,"url":null,"abstract":"Data cleaning is a time-consuming process that depends on the data analysis that users perform. Existing solutions treat data cleaning as a separate offline process that takes place before analysis begins. Applying data cleaning before analysis assumes a priori knowledge of the inconsistencies and the query workload, thereby requiring effort on understanding and cleaning the data that is unnecessary for the analysis.We propose an approach that performs probabilistic repair of functional dependency violations on-demand, driven by the exploratory analysis that users perform. We introduce Daisy, a system that seamlessly integrates data cleaning into the analysis by relaxing query results. Daisy executes analytical query-workloads over dirty data by weaving cleaning operators into the query plan. Our evaluation shows that Daisy adapts to the workload and outperforms traditional offline cleaning on both synthetic and real-world workloads.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"35 1","pages":"1886-1889"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Query-driven Repair of Functional Dependency Violations\",\"authors\":\"Stella Giannakopoulou, M. Karpathiotakis, A. Ailamaki\",\"doi\":\"10.1109/ICDE48307.2020.00195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data cleaning is a time-consuming process that depends on the data analysis that users perform. Existing solutions treat data cleaning as a separate offline process that takes place before analysis begins. Applying data cleaning before analysis assumes a priori knowledge of the inconsistencies and the query workload, thereby requiring effort on understanding and cleaning the data that is unnecessary for the analysis.We propose an approach that performs probabilistic repair of functional dependency violations on-demand, driven by the exploratory analysis that users perform. We introduce Daisy, a system that seamlessly integrates data cleaning into the analysis by relaxing query results. Daisy executes analytical query-workloads over dirty data by weaving cleaning operators into the query plan. Our evaluation shows that Daisy adapts to the workload and outperforms traditional offline cleaning on both synthetic and real-world workloads.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"35 1\",\"pages\":\"1886-1889\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据清理是一个耗时的过程,取决于用户执行的数据分析。现有解决方案将数据清理视为在分析开始之前进行的单独脱机过程。在分析之前应用数据清理假定对不一致性和查询工作负载有先验知识,因此需要努力理解和清理对分析来说不必要的数据。我们提出了一种方法,根据用户执行的探索性分析,按需执行功能依赖违反的概率修复。我们介绍Daisy,这是一个通过放松查询结果将数据清理无缝集成到分析中的系统。Daisy通过将清理操作符编织到查询计划中,对脏数据执行分析性查询工作负载。我们的评估表明,Daisy能够适应工作负载,并且在合成工作负载和实际工作负载上都优于传统的离线清理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query-driven Repair of Functional Dependency Violations
Data cleaning is a time-consuming process that depends on the data analysis that users perform. Existing solutions treat data cleaning as a separate offline process that takes place before analysis begins. Applying data cleaning before analysis assumes a priori knowledge of the inconsistencies and the query workload, thereby requiring effort on understanding and cleaning the data that is unnecessary for the analysis.We propose an approach that performs probabilistic repair of functional dependency violations on-demand, driven by the exploratory analysis that users perform. We introduce Daisy, a system that seamlessly integrates data cleaning into the analysis by relaxing query results. Daisy executes analytical query-workloads over dirty data by weaving cleaning operators into the query plan. Our evaluation shows that Daisy adapts to the workload and outperforms traditional offline cleaning on both synthetic and real-world workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信