钛上制备的ag掺杂TiO2涂层的表征及生物性能研究

Salih Durdu
{"title":"钛上制备的ag掺杂TiO2涂层的表征及生物性能研究","authors":"Salih Durdu","doi":"10.18038/AUBTDA.474928","DOIUrl":null,"url":null,"abstract":"In present study, Ag-doped TiO2 bioceramic coatings were fabricated on cp-Ti by plasma electrolytic oxidation (PEO) and physical vapor deposition (PVD). The phase composition, surface microstructure, elemental composition, surface topography, wettability and chemical state of the PEO and Ag-doped TiO2 surfaces were characterized by using powder- and thin film-X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface profilometer and contact angle measurement system (CAM), respectively. The PEO coating’ surface was porous and rough due to the nature of process. The Ti, anatase-TiO2, rutile-TiO2 and Ag2O phases were detected on the Ag-doped PEO surfaces by TF-XRD while The Ti, anatase and rutile phases were obtained on the PEO surfaces. The surface morphology structure of the PEO coating was not changed by PVD process. The Ti, O, P and Ag elements were observed on the Ag-doped PEO surfaces by EDS. Also, the amount of Ag existed on the surface was below cytotoxic limit. The Ag-doped PEO surfaces indicated better hydrophilic character to the PEO surface owing to increasing polarity of the surfaces. In vitro hydroxyapatite-forming ability was evaluated by immersion in simulated body fluid (SBF) at 36.5 °C for 28 days. The Ag-doped PEO surfaces showed good hydroxyapatite formation ability compared to the PEO surface. The antibacterial activity was evaluated by exposing the samples to Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and they were compared by the reaction of the pathogens to Ag-doped PEO with the PEO controls. The antibacterial ability of the Ag-doped PEO surfaces was significantly improved respect to the PEO surfaces for S. aureus and E. coli.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization and Investigation of Biological Properties of Ag-Doped TiO2 Coatings Fabricated on Titanium\",\"authors\":\"Salih Durdu\",\"doi\":\"10.18038/AUBTDA.474928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present study, Ag-doped TiO2 bioceramic coatings were fabricated on cp-Ti by plasma electrolytic oxidation (PEO) and physical vapor deposition (PVD). The phase composition, surface microstructure, elemental composition, surface topography, wettability and chemical state of the PEO and Ag-doped TiO2 surfaces were characterized by using powder- and thin film-X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface profilometer and contact angle measurement system (CAM), respectively. The PEO coating’ surface was porous and rough due to the nature of process. The Ti, anatase-TiO2, rutile-TiO2 and Ag2O phases were detected on the Ag-doped PEO surfaces by TF-XRD while The Ti, anatase and rutile phases were obtained on the PEO surfaces. The surface morphology structure of the PEO coating was not changed by PVD process. The Ti, O, P and Ag elements were observed on the Ag-doped PEO surfaces by EDS. Also, the amount of Ag existed on the surface was below cytotoxic limit. The Ag-doped PEO surfaces indicated better hydrophilic character to the PEO surface owing to increasing polarity of the surfaces. In vitro hydroxyapatite-forming ability was evaluated by immersion in simulated body fluid (SBF) at 36.5 °C for 28 days. The Ag-doped PEO surfaces showed good hydroxyapatite formation ability compared to the PEO surface. The antibacterial activity was evaluated by exposing the samples to Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and they were compared by the reaction of the pathogens to Ag-doped PEO with the PEO controls. The antibacterial ability of the Ag-doped PEO surfaces was significantly improved respect to the PEO surfaces for S. aureus and E. coli.\",\"PeriodicalId\":7757,\"journal\":{\"name\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18038/AUBTDA.474928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18038/AUBTDA.474928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究采用等离子体电解氧化(PEO)和物理气相沉积(PVD)技术在cp-Ti表面制备了ag掺杂TiO2生物陶瓷涂层。采用粉末x射线衍射(TF-XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、表面轮廓仪和接触角测量系统(CAM)对PEO和ag掺杂TiO2表面的相组成、表面微观结构、元素组成、表面形貌、润湿性和化学状态进行了表征。PEO涂层表面多孔且粗糙,这是由工艺性质决定的。用TF-XRD在掺ag的PEO表面检测到Ti、锐钛矿- tio2、金红石- tio2和Ag2O相,在PEO表面检测到Ti、锐钛矿和金红石相。PVD工艺对PEO涂层的表面形貌结构没有影响。能谱仪在掺银PEO表面观察到Ti、O、P和Ag元素。表面银的含量低于细胞毒性限值。ag掺杂的PEO表面由于极性增加而表现出更好的亲水性。通过在模拟体液(SBF)中36.5℃浸泡28天来评估体外羟基磷灰石形成能力。与PEO表面相比,掺银PEO表面表现出良好的羟基磷灰石形成能力。通过金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)对样品进行抑菌活性评价,并通过病原菌对掺银PEO与对照PEO的反应进行比较。ag掺杂的PEO表面对金黄色葡萄球菌和大肠杆菌的抑菌能力明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and Investigation of Biological Properties of Ag-Doped TiO2 Coatings Fabricated on Titanium
In present study, Ag-doped TiO2 bioceramic coatings were fabricated on cp-Ti by plasma electrolytic oxidation (PEO) and physical vapor deposition (PVD). The phase composition, surface microstructure, elemental composition, surface topography, wettability and chemical state of the PEO and Ag-doped TiO2 surfaces were characterized by using powder- and thin film-X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface profilometer and contact angle measurement system (CAM), respectively. The PEO coating’ surface was porous and rough due to the nature of process. The Ti, anatase-TiO2, rutile-TiO2 and Ag2O phases were detected on the Ag-doped PEO surfaces by TF-XRD while The Ti, anatase and rutile phases were obtained on the PEO surfaces. The surface morphology structure of the PEO coating was not changed by PVD process. The Ti, O, P and Ag elements were observed on the Ag-doped PEO surfaces by EDS. Also, the amount of Ag existed on the surface was below cytotoxic limit. The Ag-doped PEO surfaces indicated better hydrophilic character to the PEO surface owing to increasing polarity of the surfaces. In vitro hydroxyapatite-forming ability was evaluated by immersion in simulated body fluid (SBF) at 36.5 °C for 28 days. The Ag-doped PEO surfaces showed good hydroxyapatite formation ability compared to the PEO surface. The antibacterial activity was evaluated by exposing the samples to Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and they were compared by the reaction of the pathogens to Ag-doped PEO with the PEO controls. The antibacterial ability of the Ag-doped PEO surfaces was significantly improved respect to the PEO surfaces for S. aureus and E. coli.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信