导电域上的半星型运算

A. Okabe
{"title":"导电域上的半星型运算","authors":"A. Okabe","doi":"10.5036/MJIU.35.11","DOIUrl":null,"url":null,"abstract":"(S3)E⊆E★ and (E★)★=E★. We shall denote the set of semistar operations (resp. the set of star operations) on D by SStar (D) (resp. Star (D)) as in [5]. The main purpose of this paper is to investigate semistar operations on conducive domains. We also study the number of semistar operations. We shall denote the cardinality of a set X by |X| and the symbol⊂means \"proper inclusion\" . Throughout this paper, D denotes an integral domain with quotient field K and D the integral closure of D. Furthermore we always assume D≠K. Any unexplained terminology is standard, as in [7].","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"12 1","pages":"11-19"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Semistar operations on conductive domains\",\"authors\":\"A. Okabe\",\"doi\":\"10.5036/MJIU.35.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(S3)E⊆E★ and (E★)★=E★. We shall denote the set of semistar operations (resp. the set of star operations) on D by SStar (D) (resp. Star (D)) as in [5]. The main purpose of this paper is to investigate semistar operations on conducive domains. We also study the number of semistar operations. We shall denote the cardinality of a set X by |X| and the symbol⊂means \\\"proper inclusion\\\" . Throughout this paper, D denotes an integral domain with quotient field K and D the integral closure of D. Furthermore we always assume D≠K. Any unexplained terminology is standard, as in [7].\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"12 1\",\"pages\":\"11-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.35.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.35.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

(S3)E≤E★,(E★)★=E★。我们将表示半星型运算集(参见。由SStar (D)对D进行星型操作的集合。[5]中的星号(D)。本文的主要目的是研究有利域上的半星运算。我们还研究了半星型运算的数目。我们将用|X|表示集合X的基数,符号∧表示“适当包含”。在本文中,D表示具有商域K的积分定义域,D表示D的积分闭包,并始终假设D≠K。任何无法解释的术语都是标准的,如[7]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semistar operations on conductive domains
(S3)E⊆E★ and (E★)★=E★. We shall denote the set of semistar operations (resp. the set of star operations) on D by SStar (D) (resp. Star (D)) as in [5]. The main purpose of this paper is to investigate semistar operations on conducive domains. We also study the number of semistar operations. We shall denote the cardinality of a set X by |X| and the symbol⊂means "proper inclusion" . Throughout this paper, D denotes an integral domain with quotient field K and D the integral closure of D. Furthermore we always assume D≠K. Any unexplained terminology is standard, as in [7].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信