使用降维技术的RFID数据处理的比较

Maria Anu, Anandha Mala
{"title":"使用降维技术的RFID数据处理的比较","authors":"Maria Anu, Anandha Mala","doi":"10.1109/ICCICCT.2014.6992967","DOIUrl":null,"url":null,"abstract":"Radio Frequency Identification Technology (RFID) used in wide range environment. The volume of RFID data is enormous, the management and extraction of data is complex and time consuming process. RFID data processing can be performed after applying dimensionality reduction techniques. The proposed APCA is efficient one to handle the huge and noisy data. We had taken the two different sets of RFID data for applying this dimensionality reduction technique. The compression and execution time is calculated for these data sets. We have considered principal component Analysis (PCA) and advanced principal component analysis (APCA) and compared both the results in terms of dataset size and response time. Experiment results show that, APCA has better performance when process the RFID data.","PeriodicalId":6615,"journal":{"name":"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)","volume":"38 1","pages":"265-268"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of RFID data processing using dimensionality reduction techniques\",\"authors\":\"Maria Anu, Anandha Mala\",\"doi\":\"10.1109/ICCICCT.2014.6992967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio Frequency Identification Technology (RFID) used in wide range environment. The volume of RFID data is enormous, the management and extraction of data is complex and time consuming process. RFID data processing can be performed after applying dimensionality reduction techniques. The proposed APCA is efficient one to handle the huge and noisy data. We had taken the two different sets of RFID data for applying this dimensionality reduction technique. The compression and execution time is calculated for these data sets. We have considered principal component Analysis (PCA) and advanced principal component analysis (APCA) and compared both the results in terms of dataset size and response time. Experiment results show that, APCA has better performance when process the RFID data.\",\"PeriodicalId\":6615,\"journal\":{\"name\":\"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)\",\"volume\":\"38 1\",\"pages\":\"265-268\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICCT.2014.6992967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICCT.2014.6992967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无线射频识别技术(RFID)应用于广泛的环境。RFID数据量巨大,数据的管理和提取是一个复杂而耗时的过程。RFID数据处理可以在应用降维技术后进行。该算法是一种处理海量噪声数据的有效算法。我们采用了两组不同的射频识别数据来应用这种降维技术。计算这些数据集的压缩和执行时间。我们考虑了主成分分析(PCA)和高级主成分分析(APCA),并在数据集大小和响应时间方面比较了两者的结果。实验结果表明,APCA在处理RFID数据时具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of RFID data processing using dimensionality reduction techniques
Radio Frequency Identification Technology (RFID) used in wide range environment. The volume of RFID data is enormous, the management and extraction of data is complex and time consuming process. RFID data processing can be performed after applying dimensionality reduction techniques. The proposed APCA is efficient one to handle the huge and noisy data. We had taken the two different sets of RFID data for applying this dimensionality reduction technique. The compression and execution time is calculated for these data sets. We have considered principal component Analysis (PCA) and advanced principal component analysis (APCA) and compared both the results in terms of dataset size and response time. Experiment results show that, APCA has better performance when process the RFID data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信