通信网络基于马氏距离的流量矩阵估计

Dingde Jiang, Xingwei Wang, Lei Guo
{"title":"通信网络基于马氏距离的流量矩阵估计","authors":"Dingde Jiang, Xingwei Wang, Lei Guo","doi":"10.1002/ett.1382","DOIUrl":null,"url":null,"abstract":"This letter studies large-scale IP traffic matrix (TM) estimation problem and proposes a novel method called the Mahalanobis distance-based regressive inference (MDRI). By using Mahalanobis distance as an optimal metric, we can get rid of the highly ill-posed nature of this problem. We describe the TM estimation into an optimal process, and then by optimising the regularised equation about this problem, TM's estimation can accurately obtained. Testing results are shown to be promising. Copyright © 2010 John Wiley & Sons, Ltd.","PeriodicalId":50473,"journal":{"name":"European Transactions on Telecommunications","volume":"69 1","pages":"195-201"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Communication Networks Mahalanobis distance-based traffic matrix estimation\",\"authors\":\"Dingde Jiang, Xingwei Wang, Lei Guo\",\"doi\":\"10.1002/ett.1382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter studies large-scale IP traffic matrix (TM) estimation problem and proposes a novel method called the Mahalanobis distance-based regressive inference (MDRI). By using Mahalanobis distance as an optimal metric, we can get rid of the highly ill-posed nature of this problem. We describe the TM estimation into an optimal process, and then by optimising the regularised equation about this problem, TM's estimation can accurately obtained. Testing results are shown to be promising. Copyright © 2010 John Wiley & Sons, Ltd.\",\"PeriodicalId\":50473,\"journal\":{\"name\":\"European Transactions on Telecommunications\",\"volume\":\"69 1\",\"pages\":\"195-201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Transactions on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ett.1382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Transactions on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ett.1382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了大规模IP流量矩阵(TM)估计问题,提出了一种新的基于Mahalanobis距离的回归推理(MDRI)方法。通过使用马氏距离作为最优度量,我们可以摆脱这个问题的高度不适定性。我们将TM的估计描述为一个最优的过程,然后通过对该问题的正则化方程进行优化,得到TM的估计。测试结果显示是有希望的。版权所有©2010 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Communication Networks Mahalanobis distance-based traffic matrix estimation
This letter studies large-scale IP traffic matrix (TM) estimation problem and proposes a novel method called the Mahalanobis distance-based regressive inference (MDRI). By using Mahalanobis distance as an optimal metric, we can get rid of the highly ill-posed nature of this problem. We describe the TM estimation into an optimal process, and then by optimising the regularised equation about this problem, TM's estimation can accurately obtained. Testing results are shown to be promising. Copyright © 2010 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信