A. Ching, A. Choudhary, W. Liao, R. Ross, W. Gropp
{"title":"通过PVFS的不连续I/O","authors":"A. Ching, A. Choudhary, W. Liao, R. Ross, W. Gropp","doi":"10.1109/CLUSTR.2002.1137773","DOIUrl":null,"url":null,"abstract":"With the tremendous advances in processor and memory technology, I/O has risen to become the bottleneck in high-performance computing for many applications. The development of parallel file systems has helped to ease the performance gap, but I/O still remains an area needing significant performance improvement. Research has found that noncontiguous I/O access patterns in scientific applications combined with current file system methods, to perform these accesses lead to unacceptable performance for large data sets. To enhance performance of noncontiguous I/O, we have created list I/O, a native version of noncontiguous I/O. We have used the Parallel Virtual File System (PVFS) to implement our ideas. Our research and experimentation shows that list I/O outperforms current noncontiguous I/O access methods in most I/O situations and can substantially enhance the performance of real-world scientific applications.","PeriodicalId":92128,"journal":{"name":"Proceedings. IEEE International Conference on Cluster Computing","volume":"291 1","pages":"405-414"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Noncontiguous I/O through PVFS\",\"authors\":\"A. Ching, A. Choudhary, W. Liao, R. Ross, W. Gropp\",\"doi\":\"10.1109/CLUSTR.2002.1137773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the tremendous advances in processor and memory technology, I/O has risen to become the bottleneck in high-performance computing for many applications. The development of parallel file systems has helped to ease the performance gap, but I/O still remains an area needing significant performance improvement. Research has found that noncontiguous I/O access patterns in scientific applications combined with current file system methods, to perform these accesses lead to unacceptable performance for large data sets. To enhance performance of noncontiguous I/O, we have created list I/O, a native version of noncontiguous I/O. We have used the Parallel Virtual File System (PVFS) to implement our ideas. Our research and experimentation shows that list I/O outperforms current noncontiguous I/O access methods in most I/O situations and can substantially enhance the performance of real-world scientific applications.\",\"PeriodicalId\":92128,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Cluster Computing\",\"volume\":\"291 1\",\"pages\":\"405-414\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2002.1137773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2002.1137773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With the tremendous advances in processor and memory technology, I/O has risen to become the bottleneck in high-performance computing for many applications. The development of parallel file systems has helped to ease the performance gap, but I/O still remains an area needing significant performance improvement. Research has found that noncontiguous I/O access patterns in scientific applications combined with current file system methods, to perform these accesses lead to unacceptable performance for large data sets. To enhance performance of noncontiguous I/O, we have created list I/O, a native version of noncontiguous I/O. We have used the Parallel Virtual File System (PVFS) to implement our ideas. Our research and experimentation shows that list I/O outperforms current noncontiguous I/O access methods in most I/O situations and can substantially enhance the performance of real-world scientific applications.