具有离散控制的非线性微分对策的回避问题

IF 0.3 Q4 MATHEMATICS
A. Narmanov, K. Shchelchkov
{"title":"具有离散控制的非线性微分对策的回避问题","authors":"A. Narmanov, K. Shchelchkov","doi":"10.20537/2226-3594-2018-52-06","DOIUrl":null,"url":null,"abstract":"Рассматривается дифференциальная игра двух лиц, описываемая системой вида $$\\dot x = f(x, v) + g(x, u), \\quad x \\in \\mathbb{R}^k, \\quad u \\in U, \\quad v \\in V.$$ Множеством значений управлений убегающего является конечное подмножество фазового пространства. Множеством значений управлений преследователя является компактное подмножество фазового пространства. Целью убегающего является уклонение от встречи, то есть обеспечить состояние системы не ближе некоторой окрестности нуля. Получены достаточные условия разрешимости задачи уклонения в классе кусочно-программных стратегий убегающего на бесконечном и любом конечном интервалах времени. Условия накладываются на вектограмму скоростей в нулевой точке фазового пространства. В случае уклонения от встречи на бесконечном интервале времени эти условия обеспечивают некоторое преимущество на убегающего. Для доказательства полученных результатов существенную роль играют свойства положительного базиса.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evasion problem in a nonlinear differential game with discrete control\",\"authors\":\"A. Narmanov, K. Shchelchkov\",\"doi\":\"10.20537/2226-3594-2018-52-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Рассматривается дифференциальная игра двух лиц, описываемая системой вида $$\\\\dot x = f(x, v) + g(x, u), \\\\quad x \\\\in \\\\mathbb{R}^k, \\\\quad u \\\\in U, \\\\quad v \\\\in V.$$ Множеством значений управлений убегающего является конечное подмножество фазового пространства. Множеством значений управлений преследователя является компактное подмножество фазового пространства. Целью убегающего является уклонение от встречи, то есть обеспечить состояние системы не ближе некоторой окрестности нуля. Получены достаточные условия разрешимости задачи уклонения в классе кусочно-программных стратегий убегающего на бесконечном и любом конечном интервалах времени. Условия накладываются на вектограмму скоростей в нулевой точке фазового пространства. В случае уклонения от встречи на бесконечном интервале времени эти условия обеспечивают некоторое преимущество на убегающего. Для доказательства полученных результатов существенную роль играют свойства положительного базиса.\",\"PeriodicalId\":42053,\"journal\":{\"name\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20537/2226-3594-2018-52-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20537/2226-3594-2018-52-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The evasion problem in a nonlinear differential game with discrete control
Рассматривается дифференциальная игра двух лиц, описываемая системой вида $$\dot x = f(x, v) + g(x, u), \quad x \in \mathbb{R}^k, \quad u \in U, \quad v \in V.$$ Множеством значений управлений убегающего является конечное подмножество фазового пространства. Множеством значений управлений преследователя является компактное подмножество фазового пространства. Целью убегающего является уклонение от встречи, то есть обеспечить состояние системы не ближе некоторой окрестности нуля. Получены достаточные условия разрешимости задачи уклонения в классе кусочно-программных стратегий убегающего на бесконечном и любом конечном интервалах времени. Условия накладываются на вектограмму скоростей в нулевой точке фазового пространства. В случае уклонения от встречи на бесконечном интервале времени эти условия обеспечивают некоторое преимущество на убегающего. Для доказательства полученных результатов существенную роль играют свойства положительного базиса.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信