模糊双曲切线模型路径跟踪的h -∞控制

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Guangsi Shi, Jue Yang, Xuan Zhao, Yanfeng Li, Ya-Li Zhao, Jian Li
{"title":"模糊双曲切线模型路径跟踪的h -∞控制","authors":"Guangsi Shi, Jue Yang, Xuan Zhao, Yanfeng Li, Ya-Li Zhao, Jian Li","doi":"10.1155/2016/9072831","DOIUrl":null,"url":null,"abstract":"To achieve the goal of driver-less underground mining truck, a fuzzy hyperbolic tangent model is established for path tracking on an underground articulated mining truck. Firstly, the sample data of parameters are collected by the driver controlling articulated vehicle at a speed of 3 m/s, including both the lateral position deviation and the variation of heading angle deviation. Then, according to the improved adaptive BP neural network model and deriving formula of mediation rate of error estimator by the method of Cauchy robust, the weights are identified. Finally, H-infinity control controller is designed to control steering angle. The results of hardware-in-the-loop simulation show that lateral position deviation, heading angle deviation, and steering angle of the vehicle can be controlled, respectively, at 0.024 m, 0.08 rad, and 0.21 rad. All the deviations are asymptotically stable, and error control is in less than 2%. The method is demonstrated to be effective and reliable in path tracking for the underground vehicles.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A H-Infinity Control for Path Tracking with Fuzzy Hyperbolic Tangent Model\",\"authors\":\"Guangsi Shi, Jue Yang, Xuan Zhao, Yanfeng Li, Ya-Li Zhao, Jian Li\",\"doi\":\"10.1155/2016/9072831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve the goal of driver-less underground mining truck, a fuzzy hyperbolic tangent model is established for path tracking on an underground articulated mining truck. Firstly, the sample data of parameters are collected by the driver controlling articulated vehicle at a speed of 3 m/s, including both the lateral position deviation and the variation of heading angle deviation. Then, according to the improved adaptive BP neural network model and deriving formula of mediation rate of error estimator by the method of Cauchy robust, the weights are identified. Finally, H-infinity control controller is designed to control steering angle. The results of hardware-in-the-loop simulation show that lateral position deviation, heading angle deviation, and steering angle of the vehicle can be controlled, respectively, at 0.024 m, 0.08 rad, and 0.21 rad. All the deviations are asymptotically stable, and error control is in less than 2%. The method is demonstrated to be effective and reliable in path tracking for the underground vehicles.\",\"PeriodicalId\":46052,\"journal\":{\"name\":\"Journal of Control Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Control Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/9072831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/9072831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

为了实现井下矿车无人驾驶的目标,建立了井下铰接式矿车路径跟踪的模糊双曲切线模型。首先,由驾驶员以3 m/s的速度控制铰接车辆采集参数样本数据,包括横向位置偏差和航向角偏差的变化。然后,根据改进的自适应BP神经网络模型,利用柯西鲁棒方法推导误差估计器的中介率公式,对权重进行辨识。最后,设计了h∞控制控制器对转向角进行控制。硬件在环仿真结果表明,车辆的横向位置偏差、航向角偏差和转向角分别可以控制在0.024 m、0.08 rad和0.21 rad。所有的偏差都是渐近稳定的,误差控制在2%以内。结果表明,该方法对地下车辆的路径跟踪是有效可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A H-Infinity Control for Path Tracking with Fuzzy Hyperbolic Tangent Model
To achieve the goal of driver-less underground mining truck, a fuzzy hyperbolic tangent model is established for path tracking on an underground articulated mining truck. Firstly, the sample data of parameters are collected by the driver controlling articulated vehicle at a speed of 3 m/s, including both the lateral position deviation and the variation of heading angle deviation. Then, according to the improved adaptive BP neural network model and deriving formula of mediation rate of error estimator by the method of Cauchy robust, the weights are identified. Finally, H-infinity control controller is designed to control steering angle. The results of hardware-in-the-loop simulation show that lateral position deviation, heading angle deviation, and steering angle of the vehicle can be controlled, respectively, at 0.024 m, 0.08 rad, and 0.21 rad. All the deviations are asymptotically stable, and error control is in less than 2%. The method is demonstrated to be effective and reliable in path tracking for the underground vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Control Science and Engineering
Journal of Control Science and Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
4.70
自引率
0.00%
发文量
54
审稿时长
19 weeks
期刊介绍: Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信