基于过滤特征选择技术的入侵检测系统

Q2 Engineering
D. Kshirsagar, Sandeep Kumar
{"title":"基于过滤特征选择技术的入侵检测系统","authors":"D. Kshirsagar, Sandeep Kumar","doi":"10.1080/23335777.2021.2023651","DOIUrl":null,"url":null,"abstract":"ABSTRACT The use of machine learning models in intrusion detection systems (IDSs) takes more time to build the model with many features and degrade the performance. The present paper proposes an ensemble of filter feature selection techniques (EFFST) to obtain a significant feature subset for web attack detection by selecting one-fourth split of the ranked features. The experimentation on the CICIDS 2017 dataset shows that the proposed EFFST method provides a detection rate of 99.9909%, with J48 using 24 features. The system’s performance is compared to the original features and traditional relevant feature selection methods employed in IDSs..","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"36 1","pages":"244 - 259"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards an intrusion detection system for detecting web attacks based on an ensemble of filter feature selection techniques\",\"authors\":\"D. Kshirsagar, Sandeep Kumar\",\"doi\":\"10.1080/23335777.2021.2023651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The use of machine learning models in intrusion detection systems (IDSs) takes more time to build the model with many features and degrade the performance. The present paper proposes an ensemble of filter feature selection techniques (EFFST) to obtain a significant feature subset for web attack detection by selecting one-fourth split of the ranked features. The experimentation on the CICIDS 2017 dataset shows that the proposed EFFST method provides a detection rate of 99.9909%, with J48 using 24 features. The system’s performance is compared to the original features and traditional relevant feature selection methods employed in IDSs..\",\"PeriodicalId\":37058,\"journal\":{\"name\":\"Cyber-Physical Systems\",\"volume\":\"36 1\",\"pages\":\"244 - 259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335777.2021.2023651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2021.2023651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

摘要在入侵检测系统中使用机器学习模型需要花费大量的时间来构建具有多种特征的模型,并且降低了系统的性能。本文提出了一种滤波器特征选择技术(EFFST)的集成,通过选择排名特征的四分之一分割来获得web攻击检测的重要特征子集。在CICIDS 2017数据集上的实验表明,所提出的EFFST方法的检测率为99.9909%,其中J48使用了24个特征。将该系统的性能与ids中使用的原始特征和传统的相关特征选择方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an intrusion detection system for detecting web attacks based on an ensemble of filter feature selection techniques
ABSTRACT The use of machine learning models in intrusion detection systems (IDSs) takes more time to build the model with many features and degrade the performance. The present paper proposes an ensemble of filter feature selection techniques (EFFST) to obtain a significant feature subset for web attack detection by selecting one-fourth split of the ranked features. The experimentation on the CICIDS 2017 dataset shows that the proposed EFFST method provides a detection rate of 99.9909%, with J48 using 24 features. The system’s performance is compared to the original features and traditional relevant feature selection methods employed in IDSs..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信