{"title":"均匀集合可控系统开环输入的计算","authors":"Michael Schonlein","doi":"10.3934/mcrf.2021046","DOIUrl":null,"url":null,"abstract":"This paper presents computational methods for families of linear systems depending on a parameter. Such a family is called ensemble controllable if for any family of parameter-dependent target states and any neighborhood of it there is a parameter-independent input steering the origin into the neighborhood. Assuming that a family of systems is ensemble controllable we present methods to construct suitable open-loop input functions. Our approach to solve this infinite-dimensional task is based on a combination of methods from the theory of linear integral equations and finite-dimensional control theory.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"46 6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computation of open-loop inputs for uniformly ensemble controllable systems\",\"authors\":\"Michael Schonlein\",\"doi\":\"10.3934/mcrf.2021046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents computational methods for families of linear systems depending on a parameter. Such a family is called ensemble controllable if for any family of parameter-dependent target states and any neighborhood of it there is a parameter-independent input steering the origin into the neighborhood. Assuming that a family of systems is ensemble controllable we present methods to construct suitable open-loop input functions. Our approach to solve this infinite-dimensional task is based on a combination of methods from the theory of linear integral equations and finite-dimensional control theory.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"46 6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2021046\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2021046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Computation of open-loop inputs for uniformly ensemble controllable systems
This paper presents computational methods for families of linear systems depending on a parameter. Such a family is called ensemble controllable if for any family of parameter-dependent target states and any neighborhood of it there is a parameter-independent input steering the origin into the neighborhood. Assuming that a family of systems is ensemble controllable we present methods to construct suitable open-loop input functions. Our approach to solve this infinite-dimensional task is based on a combination of methods from the theory of linear integral equations and finite-dimensional control theory.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.