可和函数的分数积分:Maz'ya的~$\ φ $不等式

D. Stolyarov
{"title":"可和函数的分数积分:Maz'ya的~$\\ φ $不等式","authors":"D. Stolyarov","doi":"10.2422/2036-2145.202110_001","DOIUrl":null,"url":null,"abstract":"We study the inequalities of the type $|\\int_{\\mathbb{R}^d} \\Phi(K*f)| \\lesssim \\|f\\|_{L_1(\\mathbb{R}^d)}^p$, where the kernel $K$ is homogeneous of order $\\alpha - d$ and possibly vector-valued, the function $\\Phi$ is positively $p$-homogeneous, and $p = d/(d-\\alpha)$. Under mild regularity assumptions on $K$ and $\\Phi$, we find necessary and sufficient conditions on these functions under which the inequality holds true with a uniform constant for all sufficiently regular functions $f$.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractional integration of summable functions: Maz'ya's~$\\\\Phi$-inequalities\",\"authors\":\"D. Stolyarov\",\"doi\":\"10.2422/2036-2145.202110_001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the inequalities of the type $|\\\\int_{\\\\mathbb{R}^d} \\\\Phi(K*f)| \\\\lesssim \\\\|f\\\\|_{L_1(\\\\mathbb{R}^d)}^p$, where the kernel $K$ is homogeneous of order $\\\\alpha - d$ and possibly vector-valued, the function $\\\\Phi$ is positively $p$-homogeneous, and $p = d/(d-\\\\alpha)$. Under mild regularity assumptions on $K$ and $\\\\Phi$, we find necessary and sufficient conditions on these functions under which the inequality holds true with a uniform constant for all sufficiently regular functions $f$.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202110_001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202110_001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了$|\int_{\mathbb{R}^d} \Phi(K*f)| \lesssim \|f\|_{L_1(\mathbb{R}^d)}^p$类型的不等式,其中核$K$是阶为$\alpha - d$且可能是向量值的齐次,函数$\Phi$是正的$p$ -齐次,和$p = d/(d-\alpha)$。在$K$和$\Phi$上的温和正则性假设下,我们找到了这些函数的充分正则性不等式成立的充分必要条件,并对所有充分正则函数$f$有一致常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional integration of summable functions: Maz'ya's~$\Phi$-inequalities
We study the inequalities of the type $|\int_{\mathbb{R}^d} \Phi(K*f)| \lesssim \|f\|_{L_1(\mathbb{R}^d)}^p$, where the kernel $K$ is homogeneous of order $\alpha - d$ and possibly vector-valued, the function $\Phi$ is positively $p$-homogeneous, and $p = d/(d-\alpha)$. Under mild regularity assumptions on $K$ and $\Phi$, we find necessary and sufficient conditions on these functions under which the inequality holds true with a uniform constant for all sufficiently regular functions $f$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信