最小奇异值,循环定律,和林德堡交换

Pub Date : 2019-10-30 DOI:10.1090/pcms/026/10
T. Tao
{"title":"最小奇异值,循环定律,和林德堡交换","authors":"T. Tao","doi":"10.1090/pcms/026/10","DOIUrl":null,"url":null,"abstract":"These lectures cover three loosely related topics in random matrix theory. First we discuss the techniques used to bound the least singular value of (nonHermitian) random matrices, focusing particularly on the matrices with jointly independent entries. We then use these bounds to obtain the circular law for the spectrum of matrices with iid entries of finite variance. Finally, we discuss the Lindeberg exchange method which allows one to demonstrate universality of many spectral statistics of matrices (both Hermitian and non-Hermitian). 1. The least singular value This section1 of the lecture notes is concerned with the behaviour of the least singular value σn(M) of an n × n matrix M (or, more generally, the least nontrivial singular value σp(M) of a n×p matrix with p 6 n). This quantity controls the invertibility of M. Indeed, M is invertible precisely when σn(M) is non-zero, and the `2 operator norm ‖M‖op of M−1 is given by 1/σn(M). This quantity is also related to the condition number σ1(M)/σn(M) = ‖M‖op‖M‖op of M, which is of importance in numerical linear algebra. As we shall see in Section 2, the least singular value of M (and more generally, of the shifts 1 √ n M− zI for complex z) will be of importance in rigorously establishing the circular law for iid random matrices M. The least singular value2 σn(M) = inf ‖x‖=1 ‖Mx‖, which sits at the “hard edge” of the spectrum, bears a superficial similarity to the operator norm ‖M‖op = σ1(M) = sup ‖x‖=1 ‖Mx‖ 2010 Mathematics Subject Classification. Primary 60B20; Secondary 60F17.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Least singular value, circular law, and\\n Lindeberg exchange\",\"authors\":\"T. Tao\",\"doi\":\"10.1090/pcms/026/10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"These lectures cover three loosely related topics in random matrix theory. First we discuss the techniques used to bound the least singular value of (nonHermitian) random matrices, focusing particularly on the matrices with jointly independent entries. We then use these bounds to obtain the circular law for the spectrum of matrices with iid entries of finite variance. Finally, we discuss the Lindeberg exchange method which allows one to demonstrate universality of many spectral statistics of matrices (both Hermitian and non-Hermitian). 1. The least singular value This section1 of the lecture notes is concerned with the behaviour of the least singular value σn(M) of an n × n matrix M (or, more generally, the least nontrivial singular value σp(M) of a n×p matrix with p 6 n). This quantity controls the invertibility of M. Indeed, M is invertible precisely when σn(M) is non-zero, and the `2 operator norm ‖M‖op of M−1 is given by 1/σn(M). This quantity is also related to the condition number σ1(M)/σn(M) = ‖M‖op‖M‖op of M, which is of importance in numerical linear algebra. As we shall see in Section 2, the least singular value of M (and more generally, of the shifts 1 √ n M− zI for complex z) will be of importance in rigorously establishing the circular law for iid random matrices M. The least singular value2 σn(M) = inf ‖x‖=1 ‖Mx‖, which sits at the “hard edge” of the spectrum, bears a superficial similarity to the operator norm ‖M‖op = σ1(M) = sup ‖x‖=1 ‖Mx‖ 2010 Mathematics Subject Classification. Primary 60B20; Secondary 60F17.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/pcms/026/10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/pcms/026/10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这些讲座涵盖了随机矩阵理论中三个松散相关的主题。首先,我们讨论了用于约束(非厄米)随机矩阵的最小奇异值的技术,特别关注具有联合独立条目的矩阵。然后,我们利用这些界得到了有限方差的iid项矩阵谱的循环律。最后,我们讨论了Lindeberg交换方法,它允许人们证明矩阵(厄米和非厄米)的许多谱统计量的通用性。1. 本讲义第1节讨论一个n× n矩阵M的最小奇异值σn(M)的性质(或者更一般地说,一个p为6n的n×p矩阵的最小非平凡奇异值σp(M))。这个量控制着M的可逆性。事实上,当σn(M)不为零时,M是精确可逆的,并且M - 1的' 2算子范数‖M‖op由1/σn(M)给出。该量还与M的条件数σ1(M)/σn(M) =‖M‖op‖M‖op有关,在数值线性代数中具有重要意义。第2节中我们将看到,M的最小奇异值(和更普遍,1√n M−转移子对于复杂z)将在严格的重要性建立循环法iid随机矩阵M .最奇异value2σn (M) =正为x为= 1为Mx为,坐落在光谱的“硬边”,熊表面相似算子范数为M为op =σ1 (M) =一口为x为= 1为Mx为2010数学主题分类。主要60 b20;二次60 f17。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Least singular value, circular law, and Lindeberg exchange
These lectures cover three loosely related topics in random matrix theory. First we discuss the techniques used to bound the least singular value of (nonHermitian) random matrices, focusing particularly on the matrices with jointly independent entries. We then use these bounds to obtain the circular law for the spectrum of matrices with iid entries of finite variance. Finally, we discuss the Lindeberg exchange method which allows one to demonstrate universality of many spectral statistics of matrices (both Hermitian and non-Hermitian). 1. The least singular value This section1 of the lecture notes is concerned with the behaviour of the least singular value σn(M) of an n × n matrix M (or, more generally, the least nontrivial singular value σp(M) of a n×p matrix with p 6 n). This quantity controls the invertibility of M. Indeed, M is invertible precisely when σn(M) is non-zero, and the `2 operator norm ‖M‖op of M−1 is given by 1/σn(M). This quantity is also related to the condition number σ1(M)/σn(M) = ‖M‖op‖M‖op of M, which is of importance in numerical linear algebra. As we shall see in Section 2, the least singular value of M (and more generally, of the shifts 1 √ n M− zI for complex z) will be of importance in rigorously establishing the circular law for iid random matrices M. The least singular value2 σn(M) = inf ‖x‖=1 ‖Mx‖, which sits at the “hard edge” of the spectrum, bears a superficial similarity to the operator norm ‖M‖op = σ1(M) = sup ‖x‖=1 ‖Mx‖ 2010 Mathematics Subject Classification. Primary 60B20; Secondary 60F17.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信