大气压下等离子体辅助沉积

J. Salge
{"title":"大气压下等离子体辅助沉积","authors":"J. Salge","doi":"10.1051/JPHYSCOL:1995569","DOIUrl":null,"url":null,"abstract":"In plasma-assisted deposition methods the activation energy necessary for the initiation of chemical reactions is transferred via charged particles. Due to this fact in many cases the process temperature can be kept small, if gas discharges at pressures below 1 hPa are used. On the other hand low pressure requires a great deal of vacuum equipment. Processes at atmospheric pressure are more favourable, if similar results compared to existing methods can be achieved. Basis for a new plasma-assisted deposition method at atmospheric pressure are barrier discharges. Those discharges consist of a large number of transient microdischarges in parallel which are distributed statistically on the surface to be coated. Starting with some basic considerations on the repetitive generation of microdischarges, the deposition of thin polymeric films on glass surfaces is described, using barrier discharges at atmospheric pressure and acetylene. Uniform polymeric films up to 1 μm are obtained, if trains of voltage pulses are used. Parameters influencing the deposition rate and the film quality are discussed. In addition, it is estimated whether further improvements of the deposition process are possible.","PeriodicalId":17944,"journal":{"name":"Le Journal De Physique Colloques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Plasma-Assisted Deposition at Atmospheric Pressure\",\"authors\":\"J. Salge\",\"doi\":\"10.1051/JPHYSCOL:1995569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In plasma-assisted deposition methods the activation energy necessary for the initiation of chemical reactions is transferred via charged particles. Due to this fact in many cases the process temperature can be kept small, if gas discharges at pressures below 1 hPa are used. On the other hand low pressure requires a great deal of vacuum equipment. Processes at atmospheric pressure are more favourable, if similar results compared to existing methods can be achieved. Basis for a new plasma-assisted deposition method at atmospheric pressure are barrier discharges. Those discharges consist of a large number of transient microdischarges in parallel which are distributed statistically on the surface to be coated. Starting with some basic considerations on the repetitive generation of microdischarges, the deposition of thin polymeric films on glass surfaces is described, using barrier discharges at atmospheric pressure and acetylene. Uniform polymeric films up to 1 μm are obtained, if trains of voltage pulses are used. Parameters influencing the deposition rate and the film quality are discussed. In addition, it is estimated whether further improvements of the deposition process are possible.\",\"PeriodicalId\":17944,\"journal\":{\"name\":\"Le Journal De Physique Colloques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Le Journal De Physique Colloques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYSCOL:1995569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Le Journal De Physique Colloques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSCOL:1995569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

在等离子体辅助沉积方法中,引发化学反应所需的活化能通过带电粒子传递。由于这一事实,在许多情况下,如果气体排放压力低于1hpa,则可以保持较小的工艺温度。另一方面,低压需要大量的真空设备。如果能获得与现有方法相似的结果,在常压下的过程是更有利的。一种新的常压等离子体辅助沉积方法的基础是阻挡放电。这些放电由大量并联的瞬态微放电组成,这些微放电统计分布在待涂覆表面上。从重复产生微放电的一些基本考虑开始,描述了在常压和乙炔下使用阻挡放电在玻璃表面沉积聚合物薄膜。如果使用电压脉冲串,可以得到厚度达1 μm的均匀聚合物薄膜。讨论了影响沉积速率和薄膜质量的参数。此外,估计是否有可能进一步改进沉积工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma-Assisted Deposition at Atmospheric Pressure
In plasma-assisted deposition methods the activation energy necessary for the initiation of chemical reactions is transferred via charged particles. Due to this fact in many cases the process temperature can be kept small, if gas discharges at pressures below 1 hPa are used. On the other hand low pressure requires a great deal of vacuum equipment. Processes at atmospheric pressure are more favourable, if similar results compared to existing methods can be achieved. Basis for a new plasma-assisted deposition method at atmospheric pressure are barrier discharges. Those discharges consist of a large number of transient microdischarges in parallel which are distributed statistically on the surface to be coated. Starting with some basic considerations on the repetitive generation of microdischarges, the deposition of thin polymeric films on glass surfaces is described, using barrier discharges at atmospheric pressure and acetylene. Uniform polymeric films up to 1 μm are obtained, if trains of voltage pulses are used. Parameters influencing the deposition rate and the film quality are discussed. In addition, it is estimated whether further improvements of the deposition process are possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信