分布的伯恩斯坦型界

IF 0.7 Q3 STATISTICS & PROBABILITY
M. Skorski
{"title":"分布的伯恩斯坦型界","authors":"M. Skorski","doi":"10.15559/23-vmsta223","DOIUrl":null,"url":null,"abstract":"This work obtains sharp closed-form exponential concentration inequalities of Bernstein type for the ubiquitous beta distribution, improving upon sub-Gaussian and sub-gamma bounds previously studied in this context.\nThe proof leverages a novel handy recursion of order 2 for central moments of the beta distribution, obtained from the hypergeometric representations of moments; this recursion is useful for obtaining explicit expressions for central moments and various tail approximations.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"30 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bernstein-type bounds for beta distribution\",\"authors\":\"M. Skorski\",\"doi\":\"10.15559/23-vmsta223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work obtains sharp closed-form exponential concentration inequalities of Bernstein type for the ubiquitous beta distribution, improving upon sub-Gaussian and sub-gamma bounds previously studied in this context.\\nThe proof leverages a novel handy recursion of order 2 for central moments of the beta distribution, obtained from the hypergeometric representations of moments; this recursion is useful for obtaining explicit expressions for central moments and various tail approximations.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/23-vmsta223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/23-vmsta223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10

摘要

这项工作为无处不在的beta分布获得了Bernstein型的尖锐闭型指数浓度不等式,改进了先前在此背景下研究的亚高斯和亚伽马边界。这个证明利用了一种新的方便的2阶递归来处理beta分布的中心矩,它是从矩的超几何表示中得到的;这种递归对于获得中心矩和各种尾部近似的显式表达式是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bernstein-type bounds for beta distribution
This work obtains sharp closed-form exponential concentration inequalities of Bernstein type for the ubiquitous beta distribution, improving upon sub-Gaussian and sub-gamma bounds previously studied in this context. The proof leverages a novel handy recursion of order 2 for central moments of the beta distribution, obtained from the hypergeometric representations of moments; this recursion is useful for obtaining explicit expressions for central moments and various tail approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信