{"title":"分布不确定性下的最坏情况Omega比率及其在稳健投资组合选择中的应用","authors":"Qiuyang Li, Xinqiao Xie","doi":"10.1017/s0269964823000141","DOIUrl":null,"url":null,"abstract":"\n Omega ratio, a risk-return performance measure, is defined as the ratio of the expected upside deviation of return to the expected downside deviation of return from a predetermined threshold described by an investor. Motivated by finding a solution protected against sampling errors, in this paper, we focus on the worst-case Omega ratio under distributional uncertainty and its application to robust portfolio selection. The main idea is to deal with optimization problems with all uncertain parameters within an uncertainty set. The uncertainty set of the distribution of returns given characteristic information, including the first two orders of moments and the Wasserstein distance, can handle data problems with uncertainty while making the calculation feasible.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Worst-case Omega ratio under distribution uncertainty with its application in robust portfolio selection\",\"authors\":\"Qiuyang Li, Xinqiao Xie\",\"doi\":\"10.1017/s0269964823000141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Omega ratio, a risk-return performance measure, is defined as the ratio of the expected upside deviation of return to the expected downside deviation of return from a predetermined threshold described by an investor. Motivated by finding a solution protected against sampling errors, in this paper, we focus on the worst-case Omega ratio under distributional uncertainty and its application to robust portfolio selection. The main idea is to deal with optimization problems with all uncertain parameters within an uncertainty set. The uncertainty set of the distribution of returns given characteristic information, including the first two orders of moments and the Wasserstein distance, can handle data problems with uncertainty while making the calculation feasible.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964823000141\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000141","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Worst-case Omega ratio under distribution uncertainty with its application in robust portfolio selection
Omega ratio, a risk-return performance measure, is defined as the ratio of the expected upside deviation of return to the expected downside deviation of return from a predetermined threshold described by an investor. Motivated by finding a solution protected against sampling errors, in this paper, we focus on the worst-case Omega ratio under distributional uncertainty and its application to robust portfolio selection. The main idea is to deal with optimization problems with all uncertain parameters within an uncertainty set. The uncertainty set of the distribution of returns given characteristic information, including the first two orders of moments and the Wasserstein distance, can handle data problems with uncertainty while making the calculation feasible.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.