极端氢环境对增材制造不锈钢断裂和疲劳性能的影响

Thale R. Smith, C. S. Marchi, J. Sugar, D. Balch
{"title":"极端氢环境对增材制造不锈钢断裂和疲劳性能的影响","authors":"Thale R. Smith, C. S. Marchi, J. Sugar, D. Balch","doi":"10.1115/pvp2019-93903","DOIUrl":null,"url":null,"abstract":"\n Additive manufacturing (AM) offers the potential for increased design flexibility in the low volume production of complex engineering components for hydrogen service. However, the suitability of AM materials for such extreme service environments remains to be evaluated. This work examines the effects of internal and external hydrogen on AM type 304L austenitic stainless steels fabricated via directed-energy deposition (DED) and powder bed fusion (PBF) processes. Under ambient test conditions, AM materials with minimal manufacturing defects exhibit excellent combinations of tensile strength, tensile ductility, and fatigue resistance. To probe the effects of extreme hydrogen environments on the AM materials, tensile and fatigue tests were performed after thermal-precharging in high pressure gaseous hydrogen (internal H) or in high pressure gaseous hydrogen (external H). Hydrogen appears to have a comparable influence on the AM 304L as in wrought materials, although the micromechanisms of tensile fracture and fatigue crack growth appear distinct. Specifically, microstructural characterization implicates the unique solidification microstructure of AM materials in the propagation of cracks under conditions of tensile fracture with hydrogen. These results highlight the need to establish comprehensive microstructure-property relationships for AM materials to ensure their suitability for use in extreme hydrogen environments.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Extreme Hydrogen Environments on the Fracture and Fatigue Behavior of Additively Manufactured Stainless Steels\",\"authors\":\"Thale R. Smith, C. S. Marchi, J. Sugar, D. Balch\",\"doi\":\"10.1115/pvp2019-93903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Additive manufacturing (AM) offers the potential for increased design flexibility in the low volume production of complex engineering components for hydrogen service. However, the suitability of AM materials for such extreme service environments remains to be evaluated. This work examines the effects of internal and external hydrogen on AM type 304L austenitic stainless steels fabricated via directed-energy deposition (DED) and powder bed fusion (PBF) processes. Under ambient test conditions, AM materials with minimal manufacturing defects exhibit excellent combinations of tensile strength, tensile ductility, and fatigue resistance. To probe the effects of extreme hydrogen environments on the AM materials, tensile and fatigue tests were performed after thermal-precharging in high pressure gaseous hydrogen (internal H) or in high pressure gaseous hydrogen (external H). Hydrogen appears to have a comparable influence on the AM 304L as in wrought materials, although the micromechanisms of tensile fracture and fatigue crack growth appear distinct. Specifically, microstructural characterization implicates the unique solidification microstructure of AM materials in the propagation of cracks under conditions of tensile fracture with hydrogen. These results highlight the need to establish comprehensive microstructure-property relationships for AM materials to ensure their suitability for use in extreme hydrogen environments.\",\"PeriodicalId\":23651,\"journal\":{\"name\":\"Volume 6B: Materials and Fabrication\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6B: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

增材制造(AM)为氢服务复杂工程部件的小批量生产提供了提高设计灵活性的潜力。然而,增材制造材料对这种极端服务环境的适用性仍有待评估。本研究考察了内部和外部氢气对定向能沉积(DED)和粉末床熔合(PBF)工艺制备的AM型304L奥氏体不锈钢的影响。在环境测试条件下,具有最小制造缺陷的增材制造材料表现出优异的抗拉强度、抗拉延展性和抗疲劳性组合。为了探索极端氢环境对AM材料的影响,在高压气态氢(内部H)或高压气态氢(外部H)中进行热预充后进行了拉伸和疲劳试验。氢气对AM 304L的影响与变形材料相似,尽管拉伸断裂和疲劳裂纹扩展的微观机制不同。具体而言,微观组织表征表明增材制造材料在氢拉伸断裂条件下裂纹扩展过程中具有独特的凝固组织。这些结果强调需要为增材制造材料建立全面的微观结构-性能关系,以确保其适合在极端氢环境中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Extreme Hydrogen Environments on the Fracture and Fatigue Behavior of Additively Manufactured Stainless Steels
Additive manufacturing (AM) offers the potential for increased design flexibility in the low volume production of complex engineering components for hydrogen service. However, the suitability of AM materials for such extreme service environments remains to be evaluated. This work examines the effects of internal and external hydrogen on AM type 304L austenitic stainless steels fabricated via directed-energy deposition (DED) and powder bed fusion (PBF) processes. Under ambient test conditions, AM materials with minimal manufacturing defects exhibit excellent combinations of tensile strength, tensile ductility, and fatigue resistance. To probe the effects of extreme hydrogen environments on the AM materials, tensile and fatigue tests were performed after thermal-precharging in high pressure gaseous hydrogen (internal H) or in high pressure gaseous hydrogen (external H). Hydrogen appears to have a comparable influence on the AM 304L as in wrought materials, although the micromechanisms of tensile fracture and fatigue crack growth appear distinct. Specifically, microstructural characterization implicates the unique solidification microstructure of AM materials in the propagation of cracks under conditions of tensile fracture with hydrogen. These results highlight the need to establish comprehensive microstructure-property relationships for AM materials to ensure their suitability for use in extreme hydrogen environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信