非线性动态经济时间序列的置换熵与信息恢复

Miguel Henry, G. Judge
{"title":"非线性动态经济时间序列的置换熵与信息恢复","authors":"Miguel Henry, G. Judge","doi":"10.3390/ECONOMETRICS7010010","DOIUrl":null,"url":null,"abstract":"The focus of this paper is an information theoretic-symbolic logic approach to extract information from complex economic systems and unlock its dynamic content. Permutation Entropy (PE) is used to capture the permutation patterns-ordinal relations among the individual values of a given time series; to obtain a probability distribution of the accessible patterns; and to quantify the degree of complexity of an economic behavior system. Ordinal patterns are used to describe the intrinsic patterns, which are hidden in the dynamics of the economic system. Empirical applications involving the Dow Jones Industrial Average are presented to indicate the information recovery value and the applicability of the PE method. The results demonstrate the ability of the PE method to detect the extent of complexity (irregularity) and to discriminate and classify admissible and forbidden states.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series\",\"authors\":\"Miguel Henry, G. Judge\",\"doi\":\"10.3390/ECONOMETRICS7010010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this paper is an information theoretic-symbolic logic approach to extract information from complex economic systems and unlock its dynamic content. Permutation Entropy (PE) is used to capture the permutation patterns-ordinal relations among the individual values of a given time series; to obtain a probability distribution of the accessible patterns; and to quantify the degree of complexity of an economic behavior system. Ordinal patterns are used to describe the intrinsic patterns, which are hidden in the dynamics of the economic system. Empirical applications involving the Dow Jones Industrial Average are presented to indicate the information recovery value and the applicability of the PE method. The results demonstrate the ability of the PE method to detect the extent of complexity (irregularity) and to discriminate and classify admissible and forbidden states.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ECONOMETRICS7010010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ECONOMETRICS7010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

本文的重点是利用信息理论-符号逻辑方法从复杂的经济系统中提取信息并解锁其动态内容。置换熵(Permutation Entropy, PE)用于捕捉给定时间序列中各个值之间的置换模式-顺序关系;获得可访问模式的概率分布;并量化经济行为系统的复杂程度。序数模式用于描述隐藏在经济系统动力学中的内在模式。通过对道琼斯工业平均指数的实证应用,说明了PE方法的信息恢复价值和适用性。结果表明,PE方法能够检测复杂程度(不规则性),并区分和分类允许和禁止状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series
The focus of this paper is an information theoretic-symbolic logic approach to extract information from complex economic systems and unlock its dynamic content. Permutation Entropy (PE) is used to capture the permutation patterns-ordinal relations among the individual values of a given time series; to obtain a probability distribution of the accessible patterns; and to quantify the degree of complexity of an economic behavior system. Ordinal patterns are used to describe the intrinsic patterns, which are hidden in the dynamics of the economic system. Empirical applications involving the Dow Jones Industrial Average are presented to indicate the information recovery value and the applicability of the PE method. The results demonstrate the ability of the PE method to detect the extent of complexity (irregularity) and to discriminate and classify admissible and forbidden states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信