{"title":"一类保留指数函数的修正积分算子","authors":"G. Uysal","doi":"10.3934/mfc.2021044","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In the present paper, we consider a general class of operators enriched with some properties in order to act on <inline-formula><tex-math id=\"M1\">\\begin{document}$ C^{\\ast }( \\mathbb{R} _{0}^{+}) $\\end{document}</tex-math></inline-formula>. We establish uniform convergence of the operators for every function in <inline-formula><tex-math id=\"M2\">\\begin{document}$ C^{\\ast }( \\mathbb{R} _{0}^{+}) $\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathbb{R} _{0}^{+} $\\end{document}</tex-math></inline-formula>. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a special class of modified integral operators preserving some exponential functions\",\"authors\":\"G. Uysal\",\"doi\":\"10.3934/mfc.2021044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In the present paper, we consider a general class of operators enriched with some properties in order to act on <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ C^{\\\\ast }( \\\\mathbb{R} _{0}^{+}) $\\\\end{document}</tex-math></inline-formula>. We establish uniform convergence of the operators for every function in <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ C^{\\\\ast }( \\\\mathbb{R} _{0}^{+}) $\\\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\mathbb{R} _{0}^{+} $\\\\end{document}</tex-math></inline-formula>. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.</p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2021044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2021044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
摘要
In the present paper, we consider a general class of operators enriched with some properties in order to act on \begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document}. We establish uniform convergence of the operators for every function in \begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document} on \begin{document}$ \mathbb{R} _{0}^{+} $\end{document}. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.
On a special class of modified integral operators preserving some exponential functions
In the present paper, we consider a general class of operators enriched with some properties in order to act on \begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document}. We establish uniform convergence of the operators for every function in \begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document} on \begin{document}$ \mathbb{R} _{0}^{+} $\end{document}. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.