E. Ribeiro, M. Häfner, Georg Wimmer, Toru Tamaki, J. Tischendorf, S. Yoshida, Shinji Tanaka, A. Uhl
{"title":"基于卷积神经网络的结肠息肉分类纹理迁移学习研究","authors":"E. Ribeiro, M. Häfner, Georg Wimmer, Toru Tamaki, J. Tischendorf, S. Yoshida, Shinji Tanaka, A. Uhl","doi":"10.1109/ISBI.2017.7950695","DOIUrl":null,"url":null,"abstract":"This work addresses Transfer Learning via Convolutional Neural Networks (CNN's) for the automated classification of colonic polyps in eight HD-endoscopic image databases acquired using different modalities. For this purpose, we explore if the architecture, the training approach, the number of classes, the number of images as well as the nature of the images in the training phase can influence the results. The experiments show that when the number of classes and the nature of the images are similar to the target database, the results are improved. Also, the better results obtained by the transfer learning compared to the most used features in the literature suggest that features learned by CNN's can be highly relevant for automated classification of colonic polyps.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"14 1","pages":"1044-1048"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Exploring texture Transfer Learning for Colonic Polyp Classification via Convolutional Neural Networks\",\"authors\":\"E. Ribeiro, M. Häfner, Georg Wimmer, Toru Tamaki, J. Tischendorf, S. Yoshida, Shinji Tanaka, A. Uhl\",\"doi\":\"10.1109/ISBI.2017.7950695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses Transfer Learning via Convolutional Neural Networks (CNN's) for the automated classification of colonic polyps in eight HD-endoscopic image databases acquired using different modalities. For this purpose, we explore if the architecture, the training approach, the number of classes, the number of images as well as the nature of the images in the training phase can influence the results. The experiments show that when the number of classes and the nature of the images are similar to the target database, the results are improved. Also, the better results obtained by the transfer learning compared to the most used features in the literature suggest that features learned by CNN's can be highly relevant for automated classification of colonic polyps.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"14 1\",\"pages\":\"1044-1048\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring texture Transfer Learning for Colonic Polyp Classification via Convolutional Neural Networks
This work addresses Transfer Learning via Convolutional Neural Networks (CNN's) for the automated classification of colonic polyps in eight HD-endoscopic image databases acquired using different modalities. For this purpose, we explore if the architecture, the training approach, the number of classes, the number of images as well as the nature of the images in the training phase can influence the results. The experiments show that when the number of classes and the nature of the images are similar to the target database, the results are improved. Also, the better results obtained by the transfer learning compared to the most used features in the literature suggest that features learned by CNN's can be highly relevant for automated classification of colonic polyps.