{"title":"具有时变阻尼的半线性波动方程经典解的寿命","authors":"F. Guo, Jinling Liang null, Changwang Xiao","doi":"10.4208/jpde.v36.n3.1","DOIUrl":null,"url":null,"abstract":". This paper is concerned with the Cauchy problem for a semilinear wave equation with a time-dependent damping. In case that the space dimension n = 1 and the nonlinear power is bigger than 2, the life-span (cid:101) T ( ε ) and global existence of the classical solution to the problem has been investigated in a unified way. More precisely, with respect to different values of an index K , which depends on the time-dependent damping and the nonlinear term, the life-span (cid:101) T ( ε ) can be estimated below by ε − p 1 − K , e ε − p or + ∞ , where ε is the scale of the compact support of the initial data.","PeriodicalId":43504,"journal":{"name":"Journal of Partial Differential Equations","volume":"76 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life-Span of Classical Solutions to a Semilinear Wave Equation with Time-Dependent Damping\",\"authors\":\"F. Guo, Jinling Liang null, Changwang Xiao\",\"doi\":\"10.4208/jpde.v36.n3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper is concerned with the Cauchy problem for a semilinear wave equation with a time-dependent damping. In case that the space dimension n = 1 and the nonlinear power is bigger than 2, the life-span (cid:101) T ( ε ) and global existence of the classical solution to the problem has been investigated in a unified way. More precisely, with respect to different values of an index K , which depends on the time-dependent damping and the nonlinear term, the life-span (cid:101) T ( ε ) can be estimated below by ε − p 1 − K , e ε − p or + ∞ , where ε is the scale of the compact support of the initial data.\",\"PeriodicalId\":43504,\"journal\":{\"name\":\"Journal of Partial Differential Equations\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v36.n3.1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v36.n3.1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
. 研究一类具有时变阻尼的半线性波动方程的柯西问题。在空间维数n = 1且非线性幂大于2的情况下,统一地研究了该问题经典解的寿命(cid:101) T (ε)和整体存在性。更准确地说,对于依赖于时间相关阻尼和非线性项的指标K的不同值,寿命(cid:101) T (ε)可以用ε−p 1−K, e ε−p或+∞来估计,其中ε是初始数据的紧支持的尺度。
Life-Span of Classical Solutions to a Semilinear Wave Equation with Time-Dependent Damping
. This paper is concerned with the Cauchy problem for a semilinear wave equation with a time-dependent damping. In case that the space dimension n = 1 and the nonlinear power is bigger than 2, the life-span (cid:101) T ( ε ) and global existence of the classical solution to the problem has been investigated in a unified way. More precisely, with respect to different values of an index K , which depends on the time-dependent damping and the nonlinear term, the life-span (cid:101) T ( ε ) can be estimated below by ε − p 1 − K , e ε − p or + ∞ , where ε is the scale of the compact support of the initial data.