大坝-基岩体系材料非线性对混凝土重力坝抗震性能的影响

IF 0.6 4区 工程技术 Q4 MECHANICS
D. Ouzandja, M. Messaad, A. Berrabah, Mohamed Belhrizi
{"title":"大坝-基岩体系材料非线性对混凝土重力坝抗震性能的影响","authors":"D. Ouzandja, M. Messaad, A. Berrabah, Mohamed Belhrizi","doi":"10.15632/jtam-pl/157571","DOIUrl":null,"url":null,"abstract":"This paper shows the impact of material nonlinearity of a dam-foundation rock system on seismic performance of Oued Fodda concrete gravity dam, located at northwestern side of Algeria. For the purpose, a three-dimensional dam-foundation rock system finite element model is employed in analyses. The hydrodynamic interaction between reservoir water and dam-foundation system is implicitly taken into consideration by the Westergaard approach using surface finite elements added to dam-fluid and foundation-fluid interfaces. The concrete material model is used to present the cracking of dam concrete under a seismic load the using smeared crack approach based on the Willam and Warnke failure criterion. The materially nonlinear analysis for both dam concrete and foundation rock is performed using Drucker-Prager model. According to numerical results, tensile stresses and maximum strains reduce significantly in the materially nonlinear model. In addition, the cracking areas in the dam decrease also when material nonlinearity characteristics of the dam-foundation rock system is considered in analyses.","PeriodicalId":49980,"journal":{"name":"Journal of Theoretical and Applied Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of material nonlinearity of dam-foundation rock system on seismic performance of concrete gravity dams\",\"authors\":\"D. Ouzandja, M. Messaad, A. Berrabah, Mohamed Belhrizi\",\"doi\":\"10.15632/jtam-pl/157571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows the impact of material nonlinearity of a dam-foundation rock system on seismic performance of Oued Fodda concrete gravity dam, located at northwestern side of Algeria. For the purpose, a three-dimensional dam-foundation rock system finite element model is employed in analyses. The hydrodynamic interaction between reservoir water and dam-foundation system is implicitly taken into consideration by the Westergaard approach using surface finite elements added to dam-fluid and foundation-fluid interfaces. The concrete material model is used to present the cracking of dam concrete under a seismic load the using smeared crack approach based on the Willam and Warnke failure criterion. The materially nonlinear analysis for both dam concrete and foundation rock is performed using Drucker-Prager model. According to numerical results, tensile stresses and maximum strains reduce significantly in the materially nonlinear model. In addition, the cracking areas in the dam decrease also when material nonlinearity characteristics of the dam-foundation rock system is considered in analyses.\",\"PeriodicalId\":49980,\"journal\":{\"name\":\"Journal of Theoretical and Applied Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15632/jtam-pl/157571\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15632/jtam-pl/157571","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了位于阿尔及利亚西北侧的Oued Fodda混凝土重力坝材料非线性对其抗震性能的影响。为此,采用三维坝-基岩系统有限元模型进行分析。Westergaard方法采用在坝-液和基-液界面上添加表面有限元的方法,隐含地考虑了水库水与坝-基系统之间的水动力相互作用。采用基于william和Warnke破坏准则的模糊裂缝方法,采用混凝土材料模型来描述地震荷载作用下大坝混凝土的开裂。采用Drucker-Prager模型对大坝混凝土和基岩进行了材料非线性分析。数值结果表明,在材料非线性模型中,拉应力和最大应变显著减小。此外,在分析中考虑坝-基岩体系统的材料非线性特性时,坝体开裂面积也有所减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of material nonlinearity of dam-foundation rock system on seismic performance of concrete gravity dams
This paper shows the impact of material nonlinearity of a dam-foundation rock system on seismic performance of Oued Fodda concrete gravity dam, located at northwestern side of Algeria. For the purpose, a three-dimensional dam-foundation rock system finite element model is employed in analyses. The hydrodynamic interaction between reservoir water and dam-foundation system is implicitly taken into consideration by the Westergaard approach using surface finite elements added to dam-fluid and foundation-fluid interfaces. The concrete material model is used to present the cracking of dam concrete under a seismic load the using smeared crack approach based on the Willam and Warnke failure criterion. The materially nonlinear analysis for both dam concrete and foundation rock is performed using Drucker-Prager model. According to numerical results, tensile stresses and maximum strains reduce significantly in the materially nonlinear model. In addition, the cracking areas in the dam decrease also when material nonlinearity characteristics of the dam-foundation rock system is considered in analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
22
审稿时长
6 months
期刊介绍: The scope of JTAM contains: - solid mechanics - fluid mechanics - fluid structures interactions - stability and vibrations systems - robotic and control systems - mechanics of materials - dynamics of machines, vehicles and flying structures - inteligent systems - nanomechanics - biomechanics - computational mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信