n类神经的比较

IF 0.6 3区 数学 Q3 MATHEMATICS
Dimitri Ara, G. Maltsiniotis
{"title":"n类神经的比较","authors":"Dimitri Ara, G. Maltsiniotis","doi":"10.2140/agt.2022.22.2867","DOIUrl":null,"url":null,"abstract":"Our aim is to compare three nerve functors for strict $n$-categories: the Street nerve, the cellular nerve and the multi-simplicial nerve. We show that these three functors are equivalent in some appropriate sense. In particular, the classes of $n$-categorical weak equivalences that they define coincide: they are the Thomason equivalences. We give two applications of this result: the first one states that a Dyer-Kan-type equivalence for Thomason equivalences is a Thomason equivalence; the second one, fundamental, is the stability of the class of Thomason equivalences under the dualities of the category of strict $n$-categories.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparaison des nerfs n–catégoriques\",\"authors\":\"Dimitri Ara, G. Maltsiniotis\",\"doi\":\"10.2140/agt.2022.22.2867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our aim is to compare three nerve functors for strict $n$-categories: the Street nerve, the cellular nerve and the multi-simplicial nerve. We show that these three functors are equivalent in some appropriate sense. In particular, the classes of $n$-categorical weak equivalences that they define coincide: they are the Thomason equivalences. We give two applications of this result: the first one states that a Dyer-Kan-type equivalence for Thomason equivalences is a Thomason equivalence; the second one, fundamental, is the stability of the class of Thomason equivalences under the dualities of the category of strict $n$-categories.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2022.22.2867\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.2867","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们的目的是比较严格分类的三种神经功能因子:街神经、细胞神经和多单侧神经。我们证明这三个函子在某种适当的意义上是等价的。特别地,他们定义的$n$-范畴弱等价的类是重合的:它们是Thomason等价。我们给出了这一结果的两个应用:第一个应用证明了Thomason等价的dyer - kan型等价是Thomason等价;第二,基本的,是在严格范畴n范畴对偶下的Thomason等价类的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparaison des nerfs n–catégoriques
Our aim is to compare three nerve functors for strict $n$-categories: the Street nerve, the cellular nerve and the multi-simplicial nerve. We show that these three functors are equivalent in some appropriate sense. In particular, the classes of $n$-categorical weak equivalences that they define coincide: they are the Thomason equivalences. We give two applications of this result: the first one states that a Dyer-Kan-type equivalence for Thomason equivalences is a Thomason equivalence; the second one, fundamental, is the stability of the class of Thomason equivalences under the dualities of the category of strict $n$-categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信