中红外区掺杂硅材料气敏器件

Sarah Shafaay, M. Swillam
{"title":"中红外区掺杂硅材料气敏器件","authors":"Sarah Shafaay, M. Swillam","doi":"10.1117/12.2509876","DOIUrl":null,"url":null,"abstract":"Mid-infrared (MIR) region is an important region for sensing applications because it contains vibrational resonance for many gases such as methane, carbon monoxide, carbon dioxide, sulfuric acid, ammonia, and acetone. Doped silicon with negative permittivity in MIR region can be used in plasmonic technology to design gas sensors which combining both benefits of silicon and plasmonic technology in MIR region. Fabricating plasmonic integrated devices became easier with current progress in Nanotechnology. Small foot print could be achieved by using Plasmonics technology. Additionally, silicon is CMOS compatible, tunable, and it has high mobility. In this paper we proposed a Fabry-Perot resonator made of doped silicon. Moreover, we studied the response of the Fabry-Perot resonator as a gas sensor in the presence of air, methane and carbon dioxide gases. Consequently, the sensitivity, quality factor and the figure of merit are calculated.","PeriodicalId":21725,"journal":{"name":"Silicon Photonics XIV","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gas sensing devices using doped silicon material at mid-infrared region\",\"authors\":\"Sarah Shafaay, M. Swillam\",\"doi\":\"10.1117/12.2509876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mid-infrared (MIR) region is an important region for sensing applications because it contains vibrational resonance for many gases such as methane, carbon monoxide, carbon dioxide, sulfuric acid, ammonia, and acetone. Doped silicon with negative permittivity in MIR region can be used in plasmonic technology to design gas sensors which combining both benefits of silicon and plasmonic technology in MIR region. Fabricating plasmonic integrated devices became easier with current progress in Nanotechnology. Small foot print could be achieved by using Plasmonics technology. Additionally, silicon is CMOS compatible, tunable, and it has high mobility. In this paper we proposed a Fabry-Perot resonator made of doped silicon. Moreover, we studied the response of the Fabry-Perot resonator as a gas sensor in the presence of air, methane and carbon dioxide gases. Consequently, the sensitivity, quality factor and the figure of merit are calculated.\",\"PeriodicalId\":21725,\"journal\":{\"name\":\"Silicon Photonics XIV\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon Photonics XIV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2509876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon Photonics XIV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2509876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

中红外(MIR)区域是传感应用的一个重要区域,因为它包含许多气体的振动共振,如甲烷、一氧化碳、二氧化碳、硫酸、氨和丙酮。在MIR区掺杂具有负介电常数的硅,可用于等离子体技术中,设计结合了硅和等离子体技术在MIR区的优点的气体传感器。随着纳米技术的进步,制造等离子体集成器件变得更加容易。利用等离子体技术可以实现小脚印。此外,硅与CMOS兼容,可调谐,并且具有高迁移率。本文提出了一种掺杂硅的法布里-珀罗谐振器。此外,我们研究了法布里-珀罗谐振器作为气体传感器在空气、甲烷和二氧化碳气体存在下的响应。进而计算了灵敏度、品质因子和优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas sensing devices using doped silicon material at mid-infrared region
Mid-infrared (MIR) region is an important region for sensing applications because it contains vibrational resonance for many gases such as methane, carbon monoxide, carbon dioxide, sulfuric acid, ammonia, and acetone. Doped silicon with negative permittivity in MIR region can be used in plasmonic technology to design gas sensors which combining both benefits of silicon and plasmonic technology in MIR region. Fabricating plasmonic integrated devices became easier with current progress in Nanotechnology. Small foot print could be achieved by using Plasmonics technology. Additionally, silicon is CMOS compatible, tunable, and it has high mobility. In this paper we proposed a Fabry-Perot resonator made of doped silicon. Moreover, we studied the response of the Fabry-Perot resonator as a gas sensor in the presence of air, methane and carbon dioxide gases. Consequently, the sensitivity, quality factor and the figure of merit are calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信